Читаем Трактат об электричестве и магнетизме полностью

Из свойств силовых линий можно вывести ряд важных следствий.

Внутренняя поверхность замкнутого проводящего сосуда совершенно лишена заряда, и потенциал всех точек внутри неё тот же, что и у проводника, если внутри сосуда нет заряженных тел.

Действительно, поскольку силовая линия должна начинаться на положительно заряженной поверхности, а кончаться на отрицательно заряженной, а никаких заряженных тел внутри сосуда нет, то силовая линия, если она существует внутри сосуда, должна начинаться и кончаться на самой поверхности сосуда. Но потенциал в начале силовой линии должен быть больше, чем в конце, между тем мы показали, что потенциал во всех точках проводника один и тот же.

Значит, в объёме внутри полого проводящего сосуда не может быть никаких силовых линий, если там нет никаких заряженных тел.

Если проводник, находящийся внутри замкнутого полого сосуда, соединён с этим сосудом, то его потенциал становится равным потенциалу сосуда, а поверхность его становится непрерывно связанной с внутренней поверхностью сосуда. Следовательно, на проводнике нет никакого заряда.

Если представить себе произвольную заряженную поверхность разбитой на элементарные участки так, что заряд каждого участка равен единице, и если построить в силовом поле соленоиды, опирающиеся на эти элементарные площадки, то поверхностный интеграл через любую другую поверхность будет выражаться числом соленоидов, пересекаемых этой поверхностью. Именно в этом смысле Фарадей применяет понятие силовых линий для указания не только на направление, но и на величину силы в произвольной точке поля.

Мы пользуемся выражением Силовые Линии потому, что им пользовались Фарадей и другие. Строго говоря, их следовало бы назвать Линиями Электрической Индукции.

В обычных случаях линии индукции указывают также величину и направление результирующей электродвижущей напряжённости в каждой точке, поскольку напряжённость и индукция направлены одинаково и находятся в постоянном отношении. Однако бывают случаи, когда важно помнить, что эти линии указывают именно индукцию, а напряжённость непосредственно определяется эквипотенциальными поверхностями: она перпендикулярна этим поверхностям и обратно пропорциональна расстоянию между соседними поверхностями.

Об удельной индуктивной способности

83а. Выше при исследовании поверхностных интегралов мы приняли обычное представление о прямом воздействии на расстоянии и не учитывали никаких эффектов, зависящих от природы диэлектрической среды, в которой наблюдаются эти силы.

Но Фарадей заметил, что количество электричества, наводимое заданной электродвижущей силой на поверхности проводника, граничащего с диэлектриком, для разных диэлектриков различно. Для большинства твёрдых и жидких диэлектриков оно больше, чем для воздуха и для газов. Поэтому говорят, что у этих веществ удельная индуктивная способность больше, чем у воздуха, который Фарадей принял за эталонную среду.

Мы можем выразить теорию Фарадея на математическом языке, сказав, что в диэлектрической среде индукция через поверхность представляет собой произведение нормальной составляющей электрической напряжённости на коэффициент, являющийся удельной индуктивной способностью этой среды. Если этот коэффициент обозначить через K то всюду при вычислении поверхностных интегралов нам надо будет умножить X, Y, Z на K, так что уравнение Пуассона примет вид


d

dx


K

dV

dx


+

d

dy


K

dV

dy


+

d

dz


K

dV

dz


+

4

=

0.


(1)


На поверхности раздела двух сред с индуктивными способностями K1 и K2, потенциалы в которых мы обозначим V1 и V2, характеристическое уравнение можно записать в виде


K

1

dV1

d1

+

K

2

dV2

d2

+

4

=

0,


(2)


где 1, 2 - нормали в сторону первой и второй среды, а - истинная поверхностная плотность заряда на поверхности раздела, т. е. количество электричества, фактически находящееся на поверхности в виде заряда, изменить которое можно, лишь подведя к данному месту или отведя от него какой-то заряд.

Кажущееся распределение электричества

83 б. Если исходить из фактического распределения потенциала и найти по нему объёмную плотность ' и поверхностную плотность ' в предположении, что K всюду равно единице, то величину ' можно назвать кажущейся объёмной плотностью, а ' - кажущейся поверхностной плотностью, потому что полученное таким образом распределение электричества создавало бы фактически имеющееся распределение потенциала в предположении, что приведённый в п. 66 закон для электрической силы не требует никакой поправки для учёта различия в свойствах диэлектриков.

Кажущийся заряд электричества внутри заданного объёма может увеличиваться или уменьшаться без какого-либо прохождения электричества через границы этого объёма. Поэтому его следует отличать от истинного заряда, удовлетворяющего уравнению непрерывности.

В неоднородном диэлектрике, в котором K меняется непрерывно, для кажущейся объёмной плотности ' справедливо соотношение


d^2V

dx^2

+

d^2V

dy^2

+

d^2V

dz^2

+

4'

=

0.


(3)


Сопоставляя его с уравнением (1), получим


4

(-K')

+

dK

dx


dV

dx

+

dK

dy


dV

dy

+

dK

dz


dV

dz

=

0.


(4)


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже