Процесс селекции начинается с отбора перспективных исходных растений. Потом выполняется их скрещивание, оценка потомства и, наконец, вывод на рынок того сорта, который обнаруживает доказанное превосходство по сравнению с другими. Традиционно основной механизм селекции растений – это постоянное тестирование и многократные повторные испытания. Но можно ли исключить эти этапы для тех сортов, которые уже «продемонстрировали» свои недостатки, и отобрать вероятных победителей на более ранней стадии? Мы стремились заменить многократно повторяющиеся дорогостоящие и длительные тестирования принятием решений относительно собранного банка образцов растений на основе уже имеющихся достоверных данных и научных исследований.
Центр исследований и развития компании Syngenta расположен в Слейтере, штат Айова, неподалеку от Де-Мойна, на значительном удалении от большинства специалистов, чьи аналитические навыки были необходимы в работе. В плане привлечения квалифицированных аналитиков у нас было немного шансов успешно конкурировать с крупнейшими работодателями. И тогда мы решили, что нам лучше всего будет, кроме использования собственных ресурсов, наладить сотрудничество с консультантами и научными работниками в областях, не связанных с биологией и сельским хозяйством.
Открытые инновации могут способствовать решению сложных проблем бизнеса, которые компании не могут решить собственными силами. В некоторых случаях препятствием становится недостаток опыта, в других – большие расходы. Однако привлечение экспертов со стороны требует тесного взаимодействия со штатными сотрудниками – они должны чувствовать, что это полезно для бизнеса и при этом не грозит им увольнениями. Такое взаимодействие важно и для формулировки проблем, оценки возможностей. Итак, Syngenta попробовала связаться с несколькими онлайновыми краудсорсинговыми платформами, чтобы найти квалифицированных специалистов, которые могли бы помочь повысить эффективность наших НИОКР.
Но, прежде чем начинать поиски внешних экспертов, мы проинформировали сотрудников о каждой задаче, сложной проблеме или спорной ситуации, чтобы именно они смогли предлагать решения в первую очередь. И даже если им не хватало определенных профессиональных навыков, необходимых для решения сложных математических задач, практический опыт в селекции растений помогал нам точнее сформулировать вопросы. Поэтому они не воспринимали привлечение сторонних специалистов как угрозу своей работе, а видели, что их участие способствует продвижению важного проекта.
Мы старались максимально использовать краудсорсинговые платформы, а также исследовали возможность использования достижений математики в селекции лучших сортов растений. Уже в начале изучения доступных краудсорсинговых сайтов мы поняли, что для разных задач существуют разные типы платформ. Некоторые из них мы опробовали. Часть оказалась достаточно простой: вы публикуете в интернете описание проблемы, и отдельные люди предлагают вам свои решения. Это хорошо работало при идентификации, например, статистических подходов к вопросам селекции растений, когда задачу можно разрешить чисто математическими методами. Однако такие платформы не очень подходят для более сложных, междисциплинарных проблем. В этом случае полезными оказались более сложно организованные ресурсы, позволяющие объединять экспертов разного профиля в рабочие группы, подходившие к задаче итерационным методом. Например, биологические особенности адаптации какого-то растения к различным географическим поясам не сможет смоделировать специалист, работающий индивидуально и использующий только математические методы.
Мы решили использовать открытые инновации, чтобы получить возможность анализировать данные для идентификации генетических комбинаций, при которых у растений сои проявляются оптимальные свойства, в том числе максимальная урожайность. Идеального сорта сои не существует. Точнее, существуют разные виды этого растения, наиболее подходящие для тех или иных климатических зон и условий выращивания. С учетом того, что у сои 46 000 генов, определяющих ее потенциал, а число возможных комбинаций практически бесконечно, выбор самых подходящих разновидностей становится невероятно сложной задачей. Чтобы определить сорта с наилучшими характеристиками, пришлось бы протестировать их, сравнивая свойства разных сортов семян, выращенных в различных регионах по всему миру.