Специалисты-селекционеры, измеряющие урожайность растений, используют, в частности, три ключевых показателя: сколько сортов тестируется, в каких регионах и кратность повторения испытаний. Решения по каждой из трех позиций принимаются повторно на трех отдельных этапах испытания. Поскольку возможных комбинаций этих переменных чрезвычайно много (для нашего ассортимента продукции – больше триллиона!), для упрощения задач селекционеры часто увеличивают масштабы экспериментов, то есть расширяют количество испытательных площадок и производимых опытов. Таким образом, полагают они, лучшие результаты будут получаться сами собой. Однако из нашего собственного опыта мы знаем, что увеличение масштабов эксперимента не всегда обеспечивает оптимальные результаты: часто при этом просто росли затраты времени и денег.
Мы понимали, что эта проблема по своей природе намного сложнее, нежели просто проблема качества данных, которую чаще всего можно решить как чисто математическую задачу. Поэтому участникам первых не нужно было иметь глубокие познания в биологии. А вот спланировать и провести испытания на урожайность могли только специалисты, обладающие и хорошими навыками обработки цифровых данных, и достаточно глубокими познаниями в области биологии. Поэтому теперь Syngenta обратилась к другой платформе открытых инноваций, ориентированной на командную работу.
Конечно, необходимость использования команды сужает круг возможных участников конкурса. И действительно, профильную подготовку, необходимую для поиска решения нашей проблемы, имели всего несколько человек. Видимо, поэтому полученные нами первые отклики относительно проведения испытаний с применением математической модели были не такими, как мы ожидали. Мы поняли, что поставленная проблема сложнее, чем нам поначалу представлялось. Несмотря на все наши попытки четко и однозначно сформулировать задачу, участники неизменно интерпретировали ее на свой лад, решая вопросы, которые мы не ставили, и фокусируя свое внимание на тех аспектах, которые казались нам второстепенными. Это непонимание огорчало обе стороны.
Наш опыт показывает, что одна из самых больших сложностей в открытых инновациях – это формулирование проблемы таким образом, чтобы заинтересовать потенциальных исполнителей-«решателей». В итоге мы поняли, что лучше не представлять задачу в целом, не вдаваясь в детали, а разделить ее на более мелкие фрагменты.
Вместо того чтобы с помощью открытых инноваций решать проблему в целом, часто лучше разделить ее на более мелкие фрагменты. Для этого нужно сконструировать и проверить возможные варианты решения, на основе чего принять промежуточное решение. Далее проблема переформулируется для проработки следующего фрагмента. Этот процесс может повторяться до тех пор, пока не будет получено полное искомое решение.
В ходе работы по проектированию исследований урожайности мы поняли, что реализация способа, возможно, позволяющего решить проблему в целом (и требующего моделирования более триллиона возможных комбинаций для каждого тестирования урожайности), займет несколько недель и создаст слишком большую нагрузку на вычислительные ресурсы. Поэтому мы переформулировали задачу, попросив участников найти менее затратный подход. Насколько это было возможно, мы удалили из условий задачи биологию, чтобы сосредоточить внимание на математической составляющей.
Критически важным действием является проверка правильности (валидация). В агрономии мы стараемся выяснить, являются ли моделируемые эффекты следствием генетических особенностей растения или результатом воздействия окружающей среды. Тут очень легко сбиться с правильного пути, руководствуясь неправильно интерпретированной корреляцией. Но именно валидация подтверждает, что работа над одной частью проблемы завершена и можно переходить к следующей составляющей.
Одна из команд, занимавшихся решением нашей проблемы, предложила двухступенчатый статистический подход, и он показался нам перспективным. Мы проверили его на наших прошлых реальных и достоверных результатах – он выдержал проверку и в итоге был признан победителем.
На разработку системы оптимизации испытаний на урожайность, ее тестирование и подготовку к эксплуатации ушло более двух лет. Параллельно мы прошли через четыре серьезные итерации и четыре дополнительные переработки системы на открытой инновационной платформе, пока не получили первую версию нашего инструмента – полностью выверенную и готовую к использованию.