Наша концепция заключалась в необходимости создания комплекса программных средств, способных заменить интуитивные подходы в селекции растений методами, основанными на научных данных[34]
. В качестве основного инструмента нам потребовалась система мониторинга информации, которая позволяла бы селекционерам оперативно знакомиться с характеристиками растений с разных полей и сразу определять, как там обстоят дела. Для ее создания мы организовали конкурс на платформе InnoCentive, базирующейся в Уолтеме, Массачусетс. В нем приняли участие специалисты из разных областей, в том числе математики, физики, специалисты по информатике и программисты, пожелавшие проверить свои навыки решения проблем. Конкурс был открыт для всех 375 000 пользователей этой платформы. Мы предложили его участникам создать инструмент обработки исходных данных полевых испытаний с визуальным представлением результатов и выделением аномалий для их дальнейшего исследования.Этот инструмент должен был осуществлять так называемый остаточный анализ, или анализ остатков. Речь здесь идет о возможности рассчитывать разницу между наблюдаемыми и прогнозируемыми значениями генетического признака на базе статистической модели, аккумулирующей данные из множества регионов. А так как мы искали методологию и хотели получить и проверить возможно большее количество творческих идей, то сочли нужным обратиться к максимально широкой сетевой аудитории.
Наибольшее внимание к нашему конкурсу возникло в сообществе InnoCentive. Примерно за три месяца более 200 специалистов скачали подробное описание проблемы и данные, позволяющие разработать предложения по ее решению. Индивидуальные участники согласились подписать в режиме онлайн договор о неразглашении и соблюдать основные условия конкурса. В первом туре мы просили их представить техническое описание с изложением подхода к решению проблемы. Наши штатные сотрудники проанализировали каждый представленный онлайновый документ, и эксперты выделили два поступивших предложения, каждое из которых позволяло решить проблему качества данных. Мы выбрали тот подход, на основании которого, как нам показалось, было проще создать практический инструмент. Работа именно этого участника и была оплачена согласно заранее оговоренным условиям.
Таким образом мы формировали для своей организации великолепную аналитическую базу, причем с весьма малыми затратами, ведь решение даже нескольких задач обходилось нам дешевле, чем, скажем, услуги принятого в штат профессора математики. Каждая платформа имела свои типовые договоры, что заметно снижало стоимость решения проблем, поскольку мы оплачивали только правильные ответы и помощь в создании эффективного инструмента. Компания сразу четко сформулировала условия конкурса; участники понимали, что их работа будет оплачена, только если они представят именно тот результат, которого ждут организаторы.
Получив методику, победившую в первом туре конкурса, мы разместили на той же платформе информацию о второй проблеме. Теперь мы хотели усовершенствовать инструмент так, чтобы ввод данных был быстрым, несложным и интуитивно понятным для селекционеров, пользующихся инструментом в полевых условиях. На этот раз участники конкурса придумали систему, которая представляла визуальные данные об урожайности на основе результатов испытаний на полях с разными характеристиками: территории с низкой урожайностью были окрашены одним цветом, а участки с высокой урожайностью – другим. С помощью этой технологии ученым будет проще определять проблемные области, нежели при просмотре столбцов цифр.
Приведенный ниже пример показывает, как работает этот инструмент. На одном поле результаты не совпадали с ожидаемыми показателями роста для различных сортов тестируемых семян. Оказалось, что это было обусловлено различиями не в сортах семян, а в их местоположении на поле: в некоторых рядах растения были слабыми, на других же результаты соответствовали ожидаемым. Мы захотели выяснить, в чем дело. При помощи вышеописанного инструмента наш менеджер понял, где нужно искать причину обнаруженной аномалии: из-за производственного брака комбайн, который использовался для измерения урожайности на данном участке, был неправильно откалиброван, поэтому с одной стороны поля результаты замеров были искажены. Итак, благодаря новому аналитическому инструменту был обнаружен заводской брак, после чего изготовитель оборудования устранил его. Если бы дефект не был исправлен, пользователи этой машины в течение многих лет получали бы искаженные результаты тестирования, непроизводительно расходуя время и деньги.
Вдохновленные первоначальными достижениями по использованию открытых инноваций и аналитики в повышении эффективности селекции растений, мы захотели закрепить успех и поставили перед нашими «решателями» третью проблему: подобрать математическую концепцию для разработки наиболее объективных экспериментов по оценке урожайности.