Другим примером могут служить модели инфекционных заболеваний, ставшие столь популярными в эпоху коронавируса. Классической является модель SIR, в которой все население делится на три категории: восприимчивых к заболеванию (S), инфицированных (I) и выздоровевших и более не восприимчивых (R). В этой модели люди по сути рассматриваются как точки, взаимодействующие случайным образом. Исходя из предположений о том, насколько вероятна передача заболевания от инфицированного восприимчивому и через сколько времени восприимчивый сам становится инфицированным, можно получить прогноз скорости распространения заболевания среди реального населения. Модель можно усложнить, добавляя новые параметры, такие как перемешивание людей в малых группах или разные степени восприимчивости, а также учитывая данные о реальной распространяемости. Разумеется, ваша модель – это не реальный мир, поэтому усложнение вовсе не обязательно сделает ее более точной. Так что необходимо проверять, насколько ее результаты совпадают с реальностью.
В конце концов иногда (например, относительно прогноза погоды), экспериментируя и учитывая обратную связь, можно получить довольно точные и надежные прогнозы. Но все они не абсолютно достоверны. Надо отметить, что часто даже «прогнозирование» настоящего получается с трудом: в отношении трех последних кризисов большинство экономистов не считали, что происходит рецессия, даже после того, как она началась. В таких сложных сферах, как экономика, трудно разобраться.
Так что же насчет финансовых прогнозов? Как мы уже упоминали, в марте 2019 года OBR предсказывало рост экономики на 1,2 % в 2020-м и чуть более быстрый рост позже. Но при этом предусматривался 95 %-ный интервал неопределенности от –0,8 до 3,2 % в 2020-м.
Беда в том, что в заголовках обычно не хватает места для формулировок типа «экономика будет развиваться где-то в интервале между довольно серьезной рецессией и значительным бумом», поэтому в печать обычно попадает среднее значение – 1,2 %.
(В данном случае реальный результат вышел далеко за пределы 95 %-ного интервала неопределенности: произошло колоссальное, двузначное падение ВВП. Но это, вероятно, нормально, потому что опустошительные пандемии случаются реже, чем один раз в двадцать лет, так что результат не обязан совпадать с вашим 95 %-ным прогнозом.)
Читатели должны понимать, как делаются прогнозы и что они не являются ни мистическим предвидением будущего, ни случайными догадками. Это результаты более или менее точных статистических моделей, а конкретные числа (1,2 %, 50 тысяч умерших и прочее) – центральные точки в весьма широких диапазонах неопределенности.
Еще важнее, что СМИ обязаны сообщать об этой неопределенности, потому что сообщения «в этом году экономика вырастет на 1,2 %» и «в этом году экономика может слегка упасть или значительно вырасти, а может произойти что-то среднее, но, по нашим представлениям, она, скорее всего, вырастет примерно на 1,2 %» могут вызвать совершенно разную реакцию. Нам бы хотелось, чтобы СМИ начали обращаться с читателями как со взрослыми людьми, которые способны справляться с неопределенностью.
Глава 18
Допущения в моделях
В конце марта 2020-го в
И к моменту выхода статьи Хитченса оценка изменилась. «Фергюсон дважды пересмотрел свое мрачное пророчество, снизив число сначала менее чем до 20 тысяч, а потом, в пятницу, до 5700», – писал он, считая математика «одним из главных виновников возникшей паники».
Так ли это? Верно ли, что результаты модели так сильно изменились? Говорит ли это о ее бесполезности в целом?
В предыдущей главе мы обсуждали, что такое моделирование и как оно работает. Стоит подумать и о том, как получаются результаты. Как модель Имперского колледжа спрогнозировала полмиллиона умерших, если другие – такие как опубликованная 26 марта Оксфордская модель – давали на первый взгляд совершенно иные прогнозы? (А если Хитченс прав, то почему собственная модель Имперского колледжа чуть позже таких цифр уже не выдавала?)
Ответ связан со сделанными в этих моделях допущениями. Чтобы рассмотреть их, поговорим сначала о Брекзите.