Несправедливость, следствие алчности или предубеждений, сопровождала нас всегда. Можно согласиться, что ОМП ничем не хуже человеческой злобы и предрассудков недавнего прошлого. В конце концов, во многих случаях банкир, предоставляющий кредит, или менеджер отдела кадров на постоянной основе исключали из рассмотрения целые расы (не говоря уже обо всех женщинах). Даже самые неудачные математические модели, скажут многие, в сравнении с такой несправедливостью не так уж плохи.
Но принятие решений человеком при всех недостатках имеет одно большое достоинство. Оно может эволюционировать. Человеческие существа учатся и адаптируются – и с ними меняются наши процессы. Автоматические же системы застревают в неизменном состоянии, пока инженеры как-то их не меняют. Если бы модель Больших данных по приему в колледжи была создана в начале 1960-х, многие женщины до сих пор не получали бы высшее образование, потому что модель в основном ориентировалась бы на успешных мужчин. Если бы музеи в то же время оформили в виде кода общепринятое представление о том, что такое великое искусство, мы до сих пор любовались бы практически исключительно на работы белых мужчин – людей, которых спонсировали богатые покровители. И, конечно, даже не стоит упоминания, что футбольная команда Алабамского университета была бы по-прежнему исключительно белой.
Процессы, основанные на Больших данных, кодифицируют прошлое. Они не изобретают будущее. Чтобы сделать последнее, нужно моральное воображение – то, чем обладают только люди. Нам нужно, безусловно, включать главные ценности в наши алгоритмы, создавать такие модели Больших данных, которые будут следовать за нашим этическим развитием. Иногда это будет означать приоритет справедливости над прибылью.
В каком-то смысле сейчас наше общество столкнулось с новой промышленной революцией. И мы уже можем извлечь из нее некоторые уроки. Начало XX века было временем небывалого прогресса. Люди смогли осветить свои дома электричеством и согреть их углем. Железные дороги отправляли на экспорт мясо, овощи и консервы. Для многих людей хорошая жизнь становилась еще лучше.
И в то же время этот прогресс имел не столь красивую изнанку. Он обеспечивался чудовищной эксплуатацией рабочих, причем многие из них были детьми. В отсутствие нормального здравоохранения и правил техники безопасности угольные шахты были смертельными ловушками. В одном только 1907 году погибли 3242 шахтера. На бойнях люди работали по 12–15 часов в день, в антисанитарных условиях, и мясные продукты, которые отправлялись с этих боен, часто тоже были отравлены. Компания
Как нам приступить к регулированию математических моделей, которые все больше управляют нашими жизнями? Я бы предложила начать с самих создателей этих моделей. Как и врачи, специалисты по анализу данных должны давать нечто вроде клятвы Гиппократа, сосредоточенной на возможных ошибках в использовании и интерпретации моделей. После краха 2008 года два финансовых аналитика, Эммануэль Дерман и Пол Уилмотт, составили такую клятву. Она гласит: