Читаем Уроки дедушки Гаврилы, или Развивающие каникулы полностью

— Гм! У тебя очень хорошее и даже удивительное зрение. Что касается меня, то я вижу козу, белую с правого бока. Но не в этом сейчас дело. Коза привязана за колышек веревкой. Участок, где она пасется, является…

— Кругом!

— Правильно! А границей этого участка будет окружность. Все ее точки находятся от колышка на одинаковом расстоянии, равном длине веревки. Окружность — это линия, все точки которой находятся на одинаковом расстоянии от заданной точки. Надо еще добавить, что все эти точки лежат в одной плоскости. Окружность является границей круга. То есть окружность — это линия, а круг — часть плоскости. Да, кстати, подойди-ка еще раз к окну. Что ты видишь теперь?

— Белую козу с большим черным пятном на боку.

— Значит, мы можем сделать вывод, что эта коза белая с большим черным пятном на левом боку. Но вернемся к окружности. У окружности есть центр. И все точки окружности находятся на одинаковом расстоянии от центра. Это расстояние называется радиусом. Отрезок, соединяющий любые две точки окружности, называется хордой. Если хорда проходит через центр окружности, то она является диаметром. Как видишь, длина диаметра равна двум радиусам. Диаметр — самая длинная хорда. Для изображения окружности мы используем циркуль.

Нарисуй на большом листе бумаги несколько окружностей с помощью циркуля и от руки. Не правда ли, тяжело рисовать окружность от руки? (Хотя от ноги еще труднее.) Поэтому тебе задание. Каждый вечер ты должен тренироваться в изображении окружности от руки. Это трудно, но полезно. Великий художник Дюрер мог от руки нарисовать окружность и указать ее центр так точно, что даже с помощью циркуля нельзя было найти никаких отклонений.

Итак, у окружности есть центр. Но и у квадрата тоже есть центр.

75. Чем центр окружности отличается от центра квадрата? (Вопрос этот не очень точен с математической точки зрения, но все-таки понятно, о чем спрашивается.)

76. На рисунке 21 изображены несколько окружностей и несколько отрезков. Для каждой окружности один из отрезков равен ее диаметру. Вернее, почти равен. Проверь свой глазомер и попробуй «на глазок» для каждой окружности указать отрезок, равный ее диаметру. Потом проверь циркулем.

                  Рис. 21

77. Ты, конечно, видел канализационные люки. В городе их много. Как ты думаешь, почему крышки канализационных люков делаются круглыми, а не квадратными?

Возможно, окружность — самая главная фигура геометрии. Я даже считаю, что окружность — это душа геометрии. Ты, наверное, слышал о великом Архимеде. Он жил примерно 2300 лет назад в городе Сиракузы на острове Сицилия. За свою жизнь Архимед сделал много великих открытий. Я не стану их перечислять. Говорят, что именно он изобрел рычаг. Принцип рычага и сейчас используется почти в любом подъемном механизме. Он позволяет с помощью небольшого усилия поднять тяжелый груз. Именно по этому принципу и был устроен механизм, который использовал Нави. Обо всем этом ты вскоре узнаешь на уроках физики. А я хочу сказать о другом.

В конце жизни Архимед очень увлекся геометрией. Особенно интересовала его окружность. Архимед сделал замечательные геометрические открытия. Многие из них относятся именно к окружности. Так, например, он доказал, что если диаметр окружности умножить на 22, а затем получившееся число разделить на 7, то в частном будет число, очень близкое к длине окружности. В настоящее время существуют гораздо более точные методы вычисления длины окружности, но метод Архимеда вполне годится для практических расчетов и сегодня.

Перейти на страницу:

Все книги серии Познавательно! Занимательно!

Похожие книги