186.
— Здесь, ребята, изображен квадрат (рис. 52), который диагоналями разделен на четыре равных треугольника. Переложите эти треугольники так, чтобы образовались два квадрата. Это легко. А теперь переложите эти треугольники так, чтобы образовались два, но различных квадрата.
Над этой задачей провозились долго. Но все же совместными усилиями догадались, что надо просто вывернуть четыре треугольника наружу (рис. 53). Тогда образуется большой квадрат с дыркой посередине.
— А сейчас я предложу вам две задачи на разрезание.
187.
Видите уголок (рис. 54). Это из квадрата 4 х 4 удален угловой квадрат 2 х 2. Разрежьте уголок на четыре равные части.
Над этой задачей думали не очень долго. Оказывается, данный уголок можно разрезать на четыре уголка меньшего размера — из трех клеток.
— На самом деле, эта простая задача имеет очень интересные последствия. Как видите, из четырех маленьких (из трех клеток) уголков можно составить в 2 раза больший уголок. Затем из четырех больших уголков можно составить еще больший уголок. И так далее. В результате все большие куски плоскости заполняются исходными маленькими уголками. Такие построения математики обнаружили совсем недавно. Если же все маленькие уголки раскрасить в разные цвета или нанести узор, то этот узор будет постепенно странным образом заполнять плоскость. Попробуйте придумать дома свои узоры. А я покажу вам один, который нарисовал сам (рис. 55).
188.
А теперь разрежьте целый квадрат 4 х 4, но уже на 5 равных частей (рис. 56).
Ребята долго пытались это сделать, но у них ничего не получалось. К тому же общее число маленьких квадратов было 16, и оно не делилось на 5.
— А если бы у вас был квадрат 5 х 5, смогли бы вы разделить его на 5 частей?
— Ну, это легко, — сказали все дружно. — Надо разрезать его на 5 полосок.
И сразу все поняли, что так же надо поступить и с квадратом 4 х 4. А клетки здесь ни при чем. Вернее, именно при чем, поскольку они превращают очень простую задачу в трудную.
— Кстати. Математики до сих пор не знают, можно ли квадрат разрезать на 5 равных частей каким-то иным способом. Это нерешенная проблема. В математике, как и в жизни, от великого до смешного — один шаг. Вернее, наоборот, от
А теперь я вам дам одну интересную настоящую задачу. Многие математики ее решают плохо. Зато люди некоторых других, обычных профессий — легко, например, портные.
189.
У меня с собой совершенно случайно оказались ножницы и лист белой бумаги. Сейчас я отвернусь и изготовлю из них одну штуку. Клея у меня нет, — затем дедушка повернулся к ребятам спиной и буквально через минуту показал им то, что изображено на рисунке 57, и поставил
Ребята молча долго ходили вокруг пенька. Наконец, один из них — это как раз и был
— Кажется, понял.
У него
Глава 26
Прогулки в лесу
Вокруг Квашино были сплошные леса. Федя очень любил прогулки с дедушкой по лесу.
— В лесу очень хорошо думается, — говорил дедушка во время одной из таких прогулок. — Если бы ученые и поэты жили в лесу, они сделали бы намного больше потрясающих открытий и создали бы великие стихи. Но в лесу надо уметь не заблудиться. А когда думаешь на
Евгений Николаевич Колокольцев , Коллектив авторов , Ольга Борисовна Марьина , Сергей Александрович Леонов , Тамара Федоровна Курдюмова
Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Языкознание / Книги Для Детей / Образование и наука