Читаем В лабиринте чисел полностью

— Гораздо позже, — сказала Ари. — Оно происходит от латинского «nullum» — «ничто». Но, как ни странно, «ничто» — самая важная цифра нашей счётной системы! Казалось бы, пустота, воздух — а какая сила! Нуль только тогда ничего не значит, когда стоит слева от числа. Но стоит ему стать справа — и число тут же увеличивается в 10 раз. Да и слева от числа нуль ничего не значит только до тех пор, пока справа от него не поставят запятой. А чуть запятая поставлена — и число сразу уменьшилось…

— …вдесятеро? — предположил Чит.

— Как когда, — возразила Ари. — В зависимости от того, сколько в числе знаков. Нуль с запятой перед однозначным числом уменьшит его в 10 раз. Вот, например, 01 — что это такое?

— Телефон пожарной команды.

— Да нет, что это за число?

— Просто единица.

— А 0,1 это уже одна десятая, то есть дробь. Только такие дроби называются десятичными, а не простыми. Нуль с запятой перед двузначным числом 11 уменьшит его уже в 100 раз, то есть превратит в одиннадцать сотых: 0,11. А 0,111 — это уже сто одиннадцать тысячных…

— Выходит, влево от запятой каждый следующий разряд вдесятеро больше предыдущего, а вправо — вдесятеро меньше, — подытожил Чит. — Значит, если мне вздумается уменьшить единицу сразу в 100 раз, придётся…

— Придётся вклинить между запятой и единицей ещё один нуль. Вот так: 0,01. Вот какая могущественная цифра нуль! А уж число нуль и совсем особенное. Да и опасное! Нуль со знаком умножения запросто уничтожает какое угодно большое число. Ведь всякое число, помноженное на нуль, тоже превращается в нуль! Делить на нуль и того рискованней. При этом непременно придётся иметь дело с числами-великанами из бесконечности. А с бесконечностью шутки плохи! Вот почему деление на нуль строжайше запрещено. Зато сам нуль ничего не боится! Его на что ни умножай, на сколько частей ни дели — он так нулём и останется.

— Круглый он, да не дурак! — сострил Чит. — А как ведёт себя нуль при возведении в степень?

— А ты сам подумай! Чему равен нуль в первой степени?

— Если рассуждать логически, — заважничал он, — нуль в данном случае число, а всякое число в первой степени равно самому себе. Значит, нуль в первой степени тоже равен нулю.

— Верно. Подумай теперь, чему равно любое число в нулевой степени. Вот хоть 5.

— Ммм… Наверное, тоже нулю. Ведь 5 при этом надо помножить само на себя нуль раз или попросту ни разу.

— А вот тут подвела тебя логика. Каким образом? Сейчас поймёшь. Но сперва познакомься с правилами умножения и деления степеней. Реши для начала такой пример: 23 × 22.

Чит взял блокнот и написал: «23 × 22 = 8 × 4 = 32».

— Правильно, — похвалила Ари, — но можно иначе. Взгляни на результат 32. Что это такое? Это 2 × 2 × 2 × 2 × 2 = 25. Отсюда 23 × 22 = 25. Но 5 — это же сумма показателей перемножаемых степеней: 3 + 2 = 5. Значит, для перемножения степеней с одинаковыми основаниями достаточно сложить их показатели и возвести одно из оснований во вновь полученную степень: 23 × 22 = 25 = 32.

После этого Чит сам сообразил, что при делении степеней с одинаковыми основаниями надо вычислить разность показателей: 23 : 22 = 23–2 = 21 = 2.

— Вот теперь нетрудно понять, отчего любое число в нулевой степени равно не нулю, а единице, — сказала Ари. — Чему, по-твоему, равно 53 : 53? Ясно, что единице, поскольку единице равно всякое число, делённое само на себя. Но 53 : 53 = 53–3 = 50. А две величины, порознь равные третьей, равны между собой. Отсюда 50 = 1.

Вслед за этим, «рассуждая логически», Чит заключил было, что если единице равно всякое число в нулевой степени, то единице равен и нуль в нулевой степени. Но Ари снова напомнила ему, что нуль хоть и число, да не всякое: у него своя логика! И потому 00, так же как 0 : 0, равны не единице, а совсем другому числу. В математике оно называется неопределённостью, потому что у него может оказаться любое числовое значение. Да, таков уж нуль! От этого товарища всегда жди каких-нибудь фокусов. Недаром в лабиринте чисел про него поют ещё и такую песенку:

У людей говорят:«Не шути с огнём!»А у нас говорят:«Не шути с нулём!»У нуля про запасСотни каверз и проказ,Нужен глаз за нимДа глаз!Отрицательные и положительные числа

— Помнится, на балете «Знаки арифметические» ты интересовался, какие такие отрицательные числа поминал Минус, — сказала Ари. — Пора открыть тебе эту страшную тайну.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное