Пора выполнить наш долг и рассказать, что именно сделал он, доказывая пятый постулат.
Свое доказательство пятого постулата Хаййам начинает (как, впрочем, и все) с критики предшественников.
Он опровергает доказательства Герона, Евтокия, ал-Хазина, аш-Шанни ан-Найризи. Опровергает он также и Абу Али Ибн-ал-Хайсама, который шел весьма любопытным и оригинальным путем.
Али Ибн-ал-Хайсам начинает с гипотезы, что линия, описываемая верхним концом перпендикуляра данной длины при движении нижнего конца его по данной прямой, также есть прямая. (На чертеже изображены палочка с роликом и пунктирная прямая. Таким образом, автор пытается наглядно изобразить постулат Абу Али Ибн-ал-Хайсама.)
Сам Абу Али Ибн-ал-Хайсам пытался обосновать это утверждение, рассуждая о свойствах движения.
Как раз это и вызывает некоторое негодование Хаййама. Он атакует Абу Али за то, что тот вводит в геометрию движение. Тут Хаййам не прав.
Но и Абу Али тоже ошибался. Фактически он в своем доказательстве использовал постулат, эквивалентный Евклидову. А именно, его гипотеза эквивалентна постулату, уже известному нам: «геометрическое место точек, равноудаленных от прямой, тоже прямая». Но он-то надеялся, что не постулировал, а доказал это.
Но и Хаййама аллах тоже покарал за гордыню. В итоге он запутался как раз в этом вопросе. Неявно он тоже использовал тот же самый эквивалент пятого постулата, что и Абу Али. Мы не будем анализировать доказательство Хаййама, поскольку оно довольно рядовое среди других. Заметим только, что все это говорилось, чтобы позволить себе некоторое лирическое отступление: все же математики думают неплохо. В Греции ли, в Хорасане или в Италии… Призывают ли они на помощь Зевса, аллаха или Иисуса Христа, они стремятся к безукоризненной логике и если ошибаются, то на довольно высоком уровне. И многие из них отлично понимали: утверждение, что геометрическое место равноудаленных от прямой точек есть прямая, надо доказывать.
Пусть противоположная версия кажется странной, но внутренних противоречий в ней не видно. А гипотеза будет отвергнута лишь тогда, когда ее следствием будет абсурд.
И Саккери продолжает борьбу.
Он анализирует эту «кривую равных расстояний», анализирует тщательно и совершенно строго, пока в какой-то момент лукавый опять не сбивает его с пути истинного, — он находит доказательство. Это прямая. И… попадает в очередную западню носителя зла. Снова ошибка. Но Саккери-то ее не видит. Он уверен: он доказал.
Кажется, все. Работа закончена. Пятый постулат доказан. Можно издавать книгу.
И он издает ее, точнее, она появляется на свет божий через несколько месяцев после его смерти (1733 г.). Заглавие достаточно сенсационное. «Евклид, освобожденный от всех пятен, или опыт, устанавливающий самые первые принципы универсальной геометрии».
Но совесть ученого, видно, все же не очень спокойна. В заключение он пишет: «Не могу не указать здесь разницы между приведенными опровержениями обеих гипотез. При гипотезе тупого угла дело ясно, как свет божий… Между тем гипотезу острого угла мне не удается опровергнуть иначе, как доказав…»
В общем Саккери не удовлетворен. Это ясно чувствуется.
А дьявол шутит с ним свою последнюю и совсем уж злобную шутку. Работа его остается практически неизвестна до 1889 года, когда она стала иметь лишь чисто историческое значение.
По существу, Иероним Саккери блестяще доказал несколько десятков теорем неевклидовой геометрии, но его погубили исходные позиции; он все время был уверен, что вот-вот докажет пятый постулат.
Не зная о работе Саккери, еще дальше его пошел немецкий математик Ламберт (1728–1777 гг.). Он уже по праву может считаться прямым предтечей неевклидовой геометрии.
Ламберт начинает анализ, используя несколько другой четырехугольник. Вот он. В нем три прямых угла —
Он:
1. Острый.
2. Прямой.
3. Тупой.
Ламберт также довольно просто истребляет «гипотезу тупого угла».
Как именно, мы умолчим за недостатком времени.
Но мало того. Ламберт понимает и говорит, что «гипотеза тупого угла» оправдывается на сфере, если присвоить окружностям большого круга роль прямых линий. Это чрезвычайно интересное и глубокое наблюдение.
Дело в том, что и Саккери и Ламберт опровергали «гипотезу тупого угла», строго доказывая, что стоит ее принять, и будет получено: прямые
Но это противоречит известной аксиоме: через две различные точки проходит одна, и только одна, прямая.
Впрочем, достаточно даже доказать, что
Читатели могут развлечь себя проверкой последнего утверждения.
На сфере же, где дуги большого круга пересекаются в двух точках, «гипотеза тупого угла» справедлива.
После этого небольшого отступления Ламберт возвращается к плоскости.
Он показывает, что «гипотеза прямого угла» эквивалентна постулату Евклида.
Снова остается проверить и опровергнуть «гипотезу острого угла».