Дарование его поразительно. Необъяснимо. Оно блещет во всем. Один только стиль его работы показывает — это математик «милостью божией». В начале XX века примерно так будут писать работы по математической логике. Ни одного лишнего слова. Предельная сжатость. Безукоризненная логика. Исключительная ясность мысли. В центральном для всей проблемы вопросе, в вопросе о непротиворечивости неевклидовой геометрии, он ушел дальше и Гаусса и Лобачевского. По существу, он очень близок к основной идее доказательства. Он не нашел его, но зато ясно понимает, как, на каком пути надо искать.
Здесь он превосходит всех.
Вполне возможно, что для себя идеи неевклидовой геометрии он сформулировал раньше, чем Лобачевский. Примерно в 1823 году.
Правда, в печати его работа появилась на два года позже, чем первая работа Лобачевского (1831 г.).
Но, вообще говоря, подобные изыскания можно предоставить любителям приоритетных споров.
В конце концов еще раньше немецкий юрист (одно время профессор права Харьковского университета) Фердинанд Швейкарт владел основными элементарными представлениями неевклидовой геометрии. Он, правда, вообще ничего не публиковал, но его племянник Тауринус, которого он соблазнил этой проблемой, даже напечатал брошюру.
Тауринус, хотя и был несравненно более слабый математик, чем главные персонажи этой пьесы, очень близко подошел к решению. Он развил неевклидову геометрию довольно подробно, решил много тонких задач, но ясного понимания у него все же не было. Под конец он приходит к обычному итогу для исследователей пятого постулата — пытается доказать его, а значит, и справедливость евклидовой геометрии.
Это удивительно, потому что одновременно он как будто отлично понимает непротиворечивость своих неевклидовых построений, но…
Раньше мы уже говорили, что, по сути, для создания неевклидовой геометрии нужна была единственная идея, только одна мысль. А к теоремам неевклидовой геометрии неизбежно приходил всякий, кто начинал доказывать пятый постулат «от противного». Например, сам Лобачевский писал о Лежандре:
«Нахожу, что Лежандр несколько раз попадал на ту дорогу, которую я выбрал столь удачно».
Но как раз основной идеи у Лежандра не было. Этой единственной мысли у математиков вообще не было более двух тысяч лет.
Она впервые как неосознанное еще сомнение проскальзывает у Ламберта, она смутно звучит у Швейкарта и Тауринуса, к ней давно уже молча склоняется Гаусс… но только у Бояи и Лобачевского она формулируется ясно и четко.
И по строгости и глубине первая (и единственная) работа Бояи превосходит всех.
Позже, напряженно работая, Лобачевский исследует неевклидову геометрию несравненно более широко и подробно, но, если сравнивать первые работы, более яркое впечатление оставляет Бояи.
Блеск дарования виден во всем.
Он не только гениальный математик. Он исключительно одаренный музыкант. В десять лет он уже автор собственных композиций. Позже — великолепный скрипач высокого профессионального уровня.
Но таланты Бояи еще не исчерпаны. Он был, видимо, один из лучших фехтовальщиков страны. Это далеко не просто в любой стране, а в Венгрии особенно.
Наконец, по своим общественным взглядам Бояи несравненно ближе нам, чем остальные действующие лица.
Враг всякого национализма, горячий сторонник венгерской революции 1848 года, много и напряженно размышляющий над проблемами общественного устройства. Он был очень близок к идеям утопического коммунизма. К концу жизни он задумал построить математическую теорию идеального государства, рассчитывая, что найдет безошибочный рецепт всеобщего счастья.
«Теория» так и называлась: «Учение о всеобщем благе».
А в математике он сочетал холодный расчет фехтовальщика с поэзией и вдохновением музыканта.
Но одно бесповоротно портит этот пленительный образ.
Видимо, основное личное качество Бояи — тяжелое, ревнивое, болезненное, эгоистичное честолюбие. Оно определяет все в его жизни. И оно в конце концов губит его.
Я, правда, боюсь судить безапелляционно в подобных случаях, а для оценки его работы это, естественно, вообще не имеет никакого значения, но для отношения к человеку все это важно. А Бояи, как мне кажется, был из тех людей, что подходят к себе и к остальному миру с существенно разными мерками. И потому он не очень приятен мне.
Но мне очень хотелось бы узнать, что в своей оценке я ошибаюсь.
А в истории математики место Бояи ясно. Вместе с Лобачевским он с полным правом считается творцом неевклидовой геометрии.
Правда, был еще и третий.
И здесь мы оказываемся на подступах к давней приоритетной тяжбе. Хотя подобные вопросы, на мой взгляд, не заслуживают и сотой доли того внимания, что им обычно уделяют, но история с неевклидовой геометрией исключительно интересна с чисто человеческой стороны. Только поэтому о ней стоит говорить.
Раньше всех к идеям неевклидовой геометрии пришел «геттингенский гений», «король математиков», «колосс», «титан», «первый математик мира» — Карл Фридрих Гаусс (1777–1855).
Я перечислил здесь лишь часть тех титулов, что он получил при жизни, и — ничего не скажешь — все они заслуженны.