Читаем В погоне за красотой полностью

Что же, в мире думают, что он, Карл Фридрих Гаусс, просто лжет? Что он не занимался никогда сходными проблемами и не получал сходных результатов? Или «они» хотят, чтобы он разыгрывал роль благородного отца семейства? Разве мало того, что несколько десятков важнейших теорем, которые он, Гаусс, доказал, но не печатал по тем или иным причинам, опубликованы другими и славу открытия приходится делить!

И Гаусс не читает работ, присылаемых ему на отзыв, и запрещает друзьям давать ему чужие мемуары.

Он хочет так служить своему божеству, чтобы никто (а в первую очередь он сам) не мог заподозрить, что в его проповедях есть чужие фразы.

Его любовь к математике неразделима с ревностью. Это любовь мужчины. Более того — любовь мусульманина. И он жестоко переживает, если одна из его многочисленных наложниц улыбнется кому-либо другому.

Но он знает: в его гарем проникают лишь достойные. Это утешает его отчасти. И он всегда готов первый признать достоинства соперников. Но радости… Радости он не испытывает.

Так и живет внешне размеренно, покойно и однообразно этот человек. А в мозгу его непрерывно возникают и гибнут удивительные вселенные, неизмеримо более прекрасные на его вкус, чем та, где он существует.

Можно повторить: Гаусс заслуживает преклонения, но полюбить его трудно. Впрочем, не будь Архимеда и Эйнштейна, можно было бы поверить, что гениальный математик не может быть иным.

Лет сто назад, кажется, Эмерсон сказал очень любопытные слова, ставшие теперь пословицей: «Пусть каждый возьмет то, что ему хочется, и заплатит за это полной ценой».

Цена Гаусса и Ньютона была весьма высока. Эйнштейн и, насколько мы можем судить, Архимед получили все, что имели эти двое, и ухитрились избежать платы.

Человеком того же склада, что они, был и Николай Иванович Лобачевский, и хотя при всем своем блестящем таланте он ученый другого класса, чем эта четверка, он несравненно ближе и приятней мне, чем Гаусс.

Но, повторяю, я поверил бы, что Гаусс высшее существо, человек будущего или потомок мудрых марсиан, если бы не было Эйнштейна.

Одна из возлюбленных Гаусса (как трудно отвязаться от полюбившегося сравнения!) — неевклидова геометрия.

Что же не удовлетворяло Гаусса, почему он не печатал своих работ?

Мы опять вступаем на весьма скользкую стезю психологическо-детективных изысканий, но отступать уже поздно. Прежде всего, как и положено детективам, посмотрим факты.

1. Гаусс писал в частных письмах, и, безусловно, писал правду, что основные идеи неевклидовой геометрии были ясны ему еще в конце XVIII столетия. Лобачевский в это время еще не поступил в гимназию, а Бояи вообще еще не родился.

2. Исключительное значение самой проблемы очевидно. Немыслимо, чтобы Гаусс ее недооценивал.

3. Известно, мы еще вспомним об этом, что Гаусс предпринимал попытки измерить сумму углов треугольника, образованного вершинами трех гор. Следовательно, он допускал возможность, что в природе осуществляется неевклидова геометрия.

4. В архиве Гаусса после его смерти нашли лишь довольно скудные наброски; никакого сколько-нибудь систематического рассмотрения неевклидовой геометрии не было.

5. Гаусс, прочитав работы Лобачевского и Бояи, в обоих случаях подчеркивал, что, по существу, ничего нового для себя не нашел.

Здесь, правда, некоторая сложность. Дело в том, что Лобачевский несравненно шире рассматривает возможные следствия неевклидовой геометрии, чем это сделал Бояи. В этом смысле их работы несравнимы.

Лобачевский, например, довел свои исследования до стадии, когда необходимо привлечение аппарата математического анализа. Одна из его работ специально посвящена применению «воображаемой геометрии к вычислению определенных интегралов».

Во фрагментах, оставшихся после Гаусса, нет и намеков, что он добрался до подобных вопросов. Тем не менее можно думать, что Гаусс был совершенно искренен в своих письмах. Если он и не развил неевклидову геометрию столь подробно, как Лобачевский, то, вне всяких сомнений, мог бы очень легко сделать это… если бы захотел.

В принципе все «выходы» неевклидовой геометрии в анализ он, конечно, предвидел. И вероятно, без особого труда он развил бы схему неевклидовой геометрии куда глубже и подробней, потому что по гению и математической культуре равных ему не было.

Последний тезис вне сомнений.

6. Гаусс, однако, так и не придал своим идеям сколько-нибудь законченную форму и не опубликовал свои работы. Только по письмам видно, что он владел довольно многим.

Попытаемся же понять — почему?

Объяснение самого Гаусса мы отбросим. Оно примерно так же убедительно, как заявление командира линейного корабля, что он не выполнил важнейшего боевого задания, испугавшись возможной недоброжелательной реакции нескольких рыбацких лодочек, которые могли оказаться за горизонтом.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы
700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы

Как сделать так, чтобы ребёнок с удовольствием решал задачи по математике? Детям нравится самостоятельно делать покупки в магазине. При этом они решают в уме весьма непростые задачи по математике, связанные с подсчётом денег, покупок. Но в курсе математики начальной школы сюжеты задач часто далеки от практического, жизненного интереса ученика. А между прочим, даже в тестах экзамена по математике в 9 классе наряду с разделами алгебры и геометрии есть раздел с названием «Реальная математика», в который включены и задачи, требующие умения считать деньги. Данное пособие содержит задачи по всем основным разделам курса математики для начальной школы. Однако решение всех видов и типов задач основано на использовании практических навыков — ребёнок считает, сколько что стоит, знакомится с валютой разных стран. Такой подход будет способствовать развитию познавательных интересов учащихся, усилит развивающие и воспитательные функции урока, реализует межпредметные связи в процессе изучения математики. Пособие можно использовать на уроках математики для объяснения, закрепления изученного материала; для контроля знаний; в качестве дополнительных заданий отдельным ученикам; для восполнения пробелов в знаниях учащихся, а также для занятий дома.

Елена Алексеевна Нефедова , Ольга Васильевна Узорова

Математика