Тогда ясно, что логически доказать «независимость пятого постулата» вообще невозможно. Как далеко ни протянется непротиворечивая цепочка теорем, полученных при помощи «
Можно, конечно, «с отчаяния» прибегнуть к «чуждому» для математики пути — подглядеть, что дает эксперимент. Окажись, что во вселенной осуществляется «неевклидова геометрия», — вопрос о непротиворечивости отпал бы сам по себе.
Как помните, Гаусс пытался проверить, чему равна сумма углов треугольника. Независимо от него Лобачевский попросил провести подобные же измерения. У Лобачевского объект был выбран даже более удачно. По его просьбе в Казанской обсерватория измерили углы треугольника, вершинами которого были взяты три звезды. Но в обоих случаях сумма углов оказалась равной π в пределах ошибок эксперимента.
Этот результат ничего не опровергал потому, что даже если евклидова геометрия не осуществлялась в нашем мире, отклонение от π могло быть очень мало.
Но уж тем более он ничего не доказывал.
Итак? Итак, рассуждая строго логически, оставалось одно. Заключить, что вопрос открыт. И вероятно, останется таким навечно. В этом духе и высказался однажды Гаусс. (Разумеется, снова в частном письме.) «Я все более склоняюсь к убеждению, что необходимость нашей геометрии не может быть строго доказана. По крайней мере человеческим умом для человеческого ума».
Эту фразу можно прочесть и так. Я не представляю никакой мыслимой возможности доказать, что постулат, обратный пятому («
Задача не решена.
Но если так, то совершенно в духе Гаусса не публиковать своих результатов. Он не может рисковать своей репутацией и печатать работу, в которой он не уверен на сто процентов. А идеи, позволяющей рассечь узел, идеи, решающей все, — такой идеи у него нет. А дальше? Дальше вступают в игру факторы, не связанные с чистой наукой непосредственно.
То один, то другой корреспондент (Швейкарт, Тауринус, Бояи) присылает ему письма, в которых более или менее явно высказывает предположение: доказать пятый постулат нельзя и противоположный постулат не противоречит остальным аксиомам Евклида.
При этом по крайней мере для Швейкарта и Тауринуса эта идея куда более смутна, куда более неуклюже оформлена, чем видит все он — Карл Фридрих Гаусс.
Представьте себя на секунду Гауссом. Не так уж просто ответить совершенно прямо и честно. Не так просто подарить свои идеи какому-то Швейкарту, полностью отказаться от затаенной надежды решить когда-нибудь эту проклятую задачу до конца, объяснить положение, посоветовать — развивайте ваши соображения как можно тщательней, как можно полней, чем больше самых разнообразных следствий и теорем вы получите, опираясь на «
Гаусс-то знал, какова будет длина окружности в неевклидовой геометрии. Он приводит эту формулу в одном из своих писем.
Но наш «идеальный Гаусс», конечно, не напишет об этом своему корреспонденту.
Он вообще промолчит о своих собственных результатах. Он наметит обширную программу необходимых исследований, поддержит и ободрит младшего коллегу и заключит:
«Мне самому эта идея кажется очень привлекательной. Но, увы, сколько бы вы ни развивали ваши теоремы, в конечном счете вопрос о непротиворечивости неевклидовой геометрии — это вопрос веры. Строгое доказательство получить невозможно. Можно лишь довериться интуиции.
Вероятность ошибки всегда останется. Вы молоды. Ваше имя не канонизировано, вы можете позволить себе печатать глупости. Я настоятельно рекомендую вам посвятить все свои силы этой проблеме. Жду ваших писем».
Не правда ли, мы требуем довольно много от Гаусса?
Много. Но не слишком.
В науке были и подобные люди и подобные случаи. И фраза: «Вы достаточно молоды, чтобы позволить себе печатать глупости» — не придумана. Именно эти слова сказал замечательный человек, педагог и физик Эренфест двум молодым ребятам — Уленбеку и Гаудсмиту, когда те хотели забрать из журнала свою работу. Впоследствии эта работа и оказалась главным, что они сделали в науке. Кстати, им же совершенно бескорыстно отдал важнейшие соображения Эйнштейн, не очень заботясь о своем приоритете.
Но Гаусс не являл идеала научного бескорыстия. Хотя, и это необходимо сказать, он никогда не позволял себе некорректных поступков. Всегда был безукоризненно честен.
Впрочем, если уж судить совершенно придирчиво, — почти всегда.
Потому что в истории с неевклидовой геометрией он никогда не высказался до конца, не объяснил истинную причину, по которой не опубликовал свою работу.
И во всех письмах он настойчиво, по-детски настойчиво объясняет, как он боится несчастных шумливых «беотийцев».