Читаем В погоне за красотой полностью

Нам остается лишь один выход. Надо допустить, что в новой геометрии существует как бы заранее самой природой заданный постоянный масштаб.

Существует некая постоянная длина, определяющая все остальные длины.

Это странно, но совсем не абсурдно. Например, в двумерной евклидовой геометрии сферы такая выделенная длина есть. Это радиус сферической поверхности.

И, используя для геодезических съемок Марса формулы обычной евклидовой сферической геометрии, мы должны будем помнить, что некоторые «постоянные» в наших земных таблицах существенно изменятся.

Лобачевский не был смущен кажущимся парадоксам и ввел постоянный отрезок k и нашел уравнение для угла параллельности. Оно столь просто, что можно его привести:

ctg1/2φ = ex/k;

где e — основание натуральных логарифмов.

Из этого уравнения сразу видно, что когда x/k → 0, то:

ctg1/2φ ≈ e0 = 1 или 1/2φ ≈ π/4 и φ ≈ π/2.

Когда φ = 90°, с высокой степенью точности выполняется геометрия Евклида.

Но x/k близко к нулю, когда x <<k.

Теперь наши слова о малых отрезках, сказанные чуть раньше, получили точный смысл.

Если расстояние от точки, через которую мы к данной прямой проводим параллельную, много меньше постоянного отрезка k — приближенно выполняется геометрия Евклида.

В предельном случае, когда k = ∞, геометрия Евклида выполняется всегда и совершенно точно.

Естественно, первый вопрос, возникший у Лобачевского, был: как найти отрезок k?

И здесь оказывается, что его геометрия в определенном смысле «лучше» евклидовой.

Никакие теоретические рассуждения не помогут определить k. Он тó, что у физиков называется «константа теории». Найти его можно только опытным путем, только призывая на помощь конкретные физические измерения.



Угол параллельности, конечно, не измерить непосредственно, но можно, например, измерить сумму углов треугольника. «Дефект суммы» у данного треугольника зависит от значения k.

Как помните, и Лобачевский и Гаусс стимулировали подобные измерения, но ничего не выяснили.

Вообще сам Лобачевский никогда не утверждал, что именно его геометрия описывает мир. Напротив, он склонялся к мысли, что в нашем мире осуществляется геометрия Евклида.

Но это не так важно. Замечательно, что с самых первых шагов новая геометрия теснейшим образом связана с физикой, что ее немыслимо оторвать от эксперимента.

Естественно, что это непосредственно наталкивает мышление на важнейший вопрос о связи геометрии вообще с реальным миром. О возможности различных геометрий этого мира.

Вопрос, который, как мы уже говорили, не то что не предлагался, но вообще представлялся пустым и нелепым математикам в течение двух с лишним тысяч лет.

Волей-неволей появление неевклидовой геометрии возрождает проблему эксперимента. Действительно ли нам так совершенно известно, что «господь бог создал землю по законам евклидовой геометрии», как это полагал Иван Карамазов?

Это всегда очень красиво, когда абстрактные формулы вдруг наталкивают на совершенно неожиданные идеи, идеи, о которых и не подозревал автор при выводе этих формул.

Все эти выводы так пленительно изящны, что можно понять Бояи и Лобачевского, поверивших в логическую безупречность своей системы.

Причем сейчас мы обсудили лишь один из выводов самой первой работы Лобачевского — доклада в 1826 году.

Свою схему он сразу развил значительно глубже, а остальные результаты были не менее красивы. Однако в математике вопросы веры не являются решающими.

Гарантии, что где-то в дальнейшем не встретится логическое противоречие, не было.

И все остальные годы Лобачевский настойчиво пытается найти это доказательство.

Он стремится строго показать: его система безупречна. И по пути он разрабатывает самые разные, самые неожиданные следствия своей геометрии, все более и более углубляется в ее дебри.

Здесь он, вне всяких сомнений, выше своих соперников. Ни Бояи, ни Гаусс не прошли того пути, что проделал он.

Доказательства он не нашел. Хотя и был довольно близок к основной идее.

Но с чисто человеческой стороны его настойчивый, неизменный, подчиненный единственной цели труд вызывает чувство восхищения.

Глава 10

Новые идеи — Риман. Итог — непротиворечивость



Будь я склонен к рекламе, я начал бы с того, что в этой главе речь пойдет о поразительных по своей красоте вещах.

Но вместо этого я честно уведомляю читателей, что по крайней мере первая половина этой главы — довольно сухая математика.

Итак, сначала о теории поверхностей.

Прародителем ее был все тот же Гаусс. Чтобы сохранить все же какую-то видимость популярного рассказа, сформулируем интересующие нас вопросы так.

Пусть на какой-то прихотливо изогнутой поверхности обитают некие разумные двумерные существа. Какова будет их геометрия, во-первых? Как смогут они (если смогут) заметить, что их поверхность искривлена, во-вторых?

Перейти на страницу:

Все книги серии Эврика

Похожие книги

700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы
700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы

Как сделать так, чтобы ребёнок с удовольствием решал задачи по математике? Детям нравится самостоятельно делать покупки в магазине. При этом они решают в уме весьма непростые задачи по математике, связанные с подсчётом денег, покупок. Но в курсе математики начальной школы сюжеты задач часто далеки от практического, жизненного интереса ученика. А между прочим, даже в тестах экзамена по математике в 9 классе наряду с разделами алгебры и геометрии есть раздел с названием «Реальная математика», в который включены и задачи, требующие умения считать деньги. Данное пособие содержит задачи по всем основным разделам курса математики для начальной школы. Однако решение всех видов и типов задач основано на использовании практических навыков — ребёнок считает, сколько что стоит, знакомится с валютой разных стран. Такой подход будет способствовать развитию познавательных интересов учащихся, усилит развивающие и воспитательные функции урока, реализует межпредметные связи в процессе изучения математики. Пособие можно использовать на уроках математики для объяснения, закрепления изученного материала; для контроля знаний; в качестве дополнительных заданий отдельным ученикам; для восполнения пробелов в знаниях учащихся, а также для занятий дома.

Елена Алексеевна Нефедова , Ольга Васильевна Узорова

Математика