Читаем В погоне за красотой полностью

Первоначально кусок был плоским. Это значит, что кривизна его в каждой точке была равна нулю. При изгибании без растяжения кривизна не меняется. Значит, плоский кусок материи можно изогнуть только на такую поверхность, кривизна которой в каждой точке строго равна нулю.

Например, на цилиндр. Легко можно сообразить, что на боковой поверхности цилиндра гауссова кривизна строго равна нулю. Или, иначе, каждая точка поверхности параболическая. Если вы усвоили понятие кривизны, то легко убедитесь, что второй пример подходящей поверхности конус.



Но вот на шар невозможно изогнуть плоскость так, как мы этого требуем.

Кривизна шара постоянна и положительна. Именно это обстоятельство и вызывает все мучения картографов.

Несколько запоздало надо добавить, что и раньше и позже мы все время будем иметь в виду «хорошие» поверхности. Строго объяснять, что это значит, я не буду, а грубо говоря, «хорошими» мы будем считать поверхности без острых ребер и остриев. Вершина конуса, например, «нехорошая» точка.

Далее надо иметь в виду, что когда мы говорим об изгибании одной поверхности на другую, то, строго говоря, мы всегда подразумеваем возможность изгибания достаточно большого куска, а не всей замкнутой поверхности. Например, целиком развернуть боковую поверхность конуса на плоскость можно, только проделав хотя бы один разрез по образующей. Теперь последнее необходимое нам понятие — понятие геодезической линии. Геодезическая — это такая кривая линия, проведенная на поверхности между двумя точками, что любая другая кривая окажется длиннее. Вообще-то это определение из числа «почти строгих», но я утешаюсь тем, что те, кто достаточно хорошо знает математику, вообще не будут читать эту главу, и уличить меня, таким образом, некому.

Воображаемые двумерные существа, живущие на данной поверхности, скажут, что геодезическая — кратчайшее расстояние между двумя точками. Впрочем, то же самое скажут и трехмерные существа, если поставить им условие не покидать поверхность.

Для нас, жителей сферы, кратчайшие расстояния между двумя точками Земли дуги большого круга. И именно по дуге большого круга должен направлять штурман свой корабль, чтобы возможно быстрее прибыть из одного порта в другой. А теперь обсудим весьма любопытный вопрос. Мы договорились, что плоскость можно изогнуть на поверхность, кривизна которой постоянна и равна нулю. Или — что то же самое — такую поверхность можно развернуть на плоскость. Любая фигура, нарисованная на плоскости, превратится в аналогичную фигуру на нашей поверхности. Углы между линиями при изгибании не меняются. Кратчайшие линии на плоскости — прямые линии — перейдут в геодезические линии на поверхности. Поэтому для цилиндрического треугольника, например (его стороны, понятно, образованы кривыми линиями), сумма углов останется той же, что была у плоского треугольника. В том же духе можно рассуждать и далее. Каждому геометрическому понятию на плоскости можно сопоставить соответственный образ на поверхности.

И довольно легко представить, что все теоремы, имевшие место на плоскости, переносятся без изменений на поверхность.

Надо только помнить, что теперь эти теоремы справедливы для «образов». Если на плоскости осуществлялась евклидова геометрия, то она будет осуществляться и для «образов» на цилиндре.

По существу, мы сейчас соприкоснулись с одной из самых замечательных и красивых сторон математики. Пока мы не интересуемся практическим приложением, нам совершенно все равно, о чем именно говорят наши теоремы. Лишь бы они удовлетворяли требованиям логики. Более того, мы даже не знаем, о чем мы, собственно, говорим. Только физику необходимо знать, что происходит «на самом деле». Каков его мир.

Для физики прямая — это луч света. Для математики это одно из основных неопределяемых понятий. Прямые на евклидовой плоскости и геодезические линии на поверхности цилиндра невозможно различить, если сравнивать их только с точки зрения аксиоматики.

Представим себе некую фантастическую картину. Два двумерных мира. Один плоский. Другой на поверхности цилиндра. В обоих живут разумные существа. Допустим, они каким-то образом наладили связь.

Двумерный «плоский» и двумерный «цилиндрический» математики с удовольствием бы констатировали, что у них одна геометрия.

Окажись система аксиом противоречивой на евклидовой плоскости, мы сразу бы знали: она противоречива и на цилиндре.

Один мог бы объяснять другому теоремы, которые он доказал, и второй принимал бы их без всяких изменений. Они могли бы работать вместе без малейших разногласий. Вот у «плоского» и «цилиндрического» физиков такого тесного контакта не было бы. Они с самого начала заявили бы, что в их мирах законы природы различны.

Впрочем, если бы в «цилиндрическом» мире луч света распространялся по геодезической линии, они тоже не сразу бы обнаружили отличия.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы
700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы

Как сделать так, чтобы ребёнок с удовольствием решал задачи по математике? Детям нравится самостоятельно делать покупки в магазине. При этом они решают в уме весьма непростые задачи по математике, связанные с подсчётом денег, покупок. Но в курсе математики начальной школы сюжеты задач часто далеки от практического, жизненного интереса ученика. А между прочим, даже в тестах экзамена по математике в 9 классе наряду с разделами алгебры и геометрии есть раздел с названием «Реальная математика», в который включены и задачи, требующие умения считать деньги. Данное пособие содержит задачи по всем основным разделам курса математики для начальной школы. Однако решение всех видов и типов задач основано на использовании практических навыков — ребёнок считает, сколько что стоит, знакомится с валютой разных стран. Такой подход будет способствовать развитию познавательных интересов учащихся, усилит развивающие и воспитательные функции урока, реализует межпредметные связи в процессе изучения математики. Пособие можно использовать на уроках математики для объяснения, закрепления изученного материала; для контроля знаний; в качестве дополнительных заданий отдельным ученикам; для восполнения пробелов в знаниях учащихся, а также для занятий дома.

Елена Алексеевна Нефедова , Ольга Васильевна Узорова

Математика