Читаем В погоне за красотой полностью

Попробуем доказать, что если в правилах одной из них скрыто внутреннее противоречие, то оно непременно есть и в правилах другой.

Правила игры — напомним еще раз — это список аксиом.

Как видите, мы несколько изменили постановку вопроса.

Мы понимаем, что прямо, в лоб, строго решить проблему непротиворечивости — задача безнадежная.

Сколько бы сотен миллионов теорем мы ни доказали, не может быть уверенности, что в следующей теореме мы не наткнемся на противоречие.

А теперь мы хотим доказать: если противоречива геометрия Лобачевского, то непременно противоречива и геометрия Евклида.

Однако на первый взгляд и здесь не видно ясного пути.

Правила игры (аксиомы) различны. Правда, отличаются геометрии лишь одной аксиомой — аксиомой о параллельных, но в принципе дела это не меняет.

Игры разные. И совершенно неясно, как вообще можно перекинуть связующий мост между ними.

Тем не менее это оказалось возможно.

Боюсь, что различные аналогии, призванные пояснять, лишь затуманят суть, и потому прямо перейду к доказательству. Автор его — один из крупнейших математиков XIX века Феликс Клейн. О нем, конечно, стоило бы рассказать. Был он интересный и сложный человек, но, к сожалению, нам невозможно слишком увлекаться историей. Я хочу только привести один поразивший меня в свое время факт.

Клейн прожил долгую жизнь. И если взять только те его работы, что были им выполнены после 30–35 лет, то по любым меркам — перед нами великолепный разносторонний ученый. Активный, тонкий, плодовитый математик, блестящий знаток прошлого своей науки, один из лучших педагогов за всю историю математики.

Сам он жестко и безапелляционно написал, что после 30 лет в результате нервного переутомления, вызванного исследованием одной математической проблемы он никогда больше не был способен к творческой деятельности. Он не кокетничал. Он действительно думал именно так. И признаюсь, меня подкупают люди такого склада. Другой вопрос — облегчает ли им жизнь такая беспощадность к себе?

Итак, доказательство.

Сначала мы «играем» в евклидову геометрию. Рассмотрим обычный круг. Проведем в нем хорду. Возьмем какую-нибудь точку, не лежащую на этой хорде. Ясно, что через эту точку можно провести бесчисленное число других хорд, не пересекающих нашу. Это все хорды, уместившиеся между двумя пересекающими нашу в ее крайних точках; там, где она пересекается с окружностью.

Пока все до наивности ясно. Неясно только, какое отношение этот круг может иметь к геометрии Лобачевского.

И сейчас произойдет удивительное.

Идея Клейна в том, что он превращает этот тривиальный круг в модель плоскости Лобачевского.

Вот как это происходит.

Повторим старое заклинание.

Математику все равно, что такое его Основные Понятия. Лишь бы удовлетворялись аксиомы.

И начинается двойная игра.

Мы называем:

круг — плоскостью Лобачевского;

любую хорду в круге — прямой Лобачевского;

точку — точкой Лобачевского.

Естественно, мы должны добавить новые понятия: «соотношения», «лежать между», «принадлежать» и «движение».

Добавим их. А после этого попробуем сыграть с этими евклидовыми элементами в «геометрию Лобачевского».

Чтобы проделать это, надо будет обратиться к списку аксиом и проверить, удовлетворяют ли наши элементы аксиомам геометрии Лобачевского.

Сравнительно легко можно убедиться, что с большинством аксиом все в порядке.

Все великолепно и с аксиомой о параллельных — единственной, отличающей геометрию Лобачевского от геометрии Евклида: «Через данную точку к данной «прямой» можно провести бесчисленное множество непересекающих ее «прямых».

Пока из чувства перестраховки я ставлю кавычки у слова «прямая». Но стоит доказать, что для наших понятий выполняются все аксиомы геометрии Лобачевского, — и кавычки можно будет смело убрать.

Не забывайте только — идет двойная игра. Мы все время должны «переводить» с языка евклидовой геометрии на язык геометрии Лобачевского. И наоборот.



С понятиями «принадлежать» и «лежать между» все хорошо. На обоих языках они одинаковы. Трудности начинаются, когда мы переходим к движению.

Понятие «движение» должно удовлетворить всей группе аксиом движения.

Мы заявили, что наш круг — плоскость Лобачевского. Очень хорошо. Мы можем определить движение в этой плоскости Лобачевского. Это движение обязано удовлетворять всем положенным ему аксиомам. (Их стоит сейчас посмотреть в приложении к третьей главе.)

Тоже хорошо. Но неясно, можно ли сформулировать это понятие движения неевклидовой плоскости на языке евклидовой геометрии.

Неевклидова плоскость в нашем случае на евклидовом языке — круг. Движение, вспоминаем мы, — это взаимно однозначное преобразование плоскости самой в себя. Значит, на евклидовом языке мы должны найти какое-то преобразование круга самого в себя.

Один класс таких преобразований сразу назойливо напрашивается. Это простые повороты круга относительно его центра. Однако легко убедиться, что эти преобразования не годятся как кандидаты в «неевклидово движение».

Перейти на страницу:

Все книги серии Эврика

Похожие книги

700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы
700 задач по математике. Все типы задач курса начальной школы. Учимся считать деньги. 1-4 классы

Как сделать так, чтобы ребёнок с удовольствием решал задачи по математике? Детям нравится самостоятельно делать покупки в магазине. При этом они решают в уме весьма непростые задачи по математике, связанные с подсчётом денег, покупок. Но в курсе математики начальной школы сюжеты задач часто далеки от практического, жизненного интереса ученика. А между прочим, даже в тестах экзамена по математике в 9 классе наряду с разделами алгебры и геометрии есть раздел с названием «Реальная математика», в который включены и задачи, требующие умения считать деньги. Данное пособие содержит задачи по всем основным разделам курса математики для начальной школы. Однако решение всех видов и типов задач основано на использовании практических навыков — ребёнок считает, сколько что стоит, знакомится с валютой разных стран. Такой подход будет способствовать развитию познавательных интересов учащихся, усилит развивающие и воспитательные функции урока, реализует межпредметные связи в процессе изучения математики. Пособие можно использовать на уроках математики для объяснения, закрепления изученного материала; для контроля знаний; в качестве дополнительных заданий отдельным ученикам; для восполнения пробелов в знаниях учащихся, а также для занятий дома.

Елена Алексеевна Нефедова , Ольга Васильевна Узорова

Математика