Попробуем доказать, что если в правилах одной из них скрыто внутреннее противоречие, то оно непременно есть и в правилах другой.
Правила игры — напомним еще раз — это список аксиом.
Как видите, мы несколько изменили постановку вопроса.
Мы понимаем, что прямо, в лоб, строго решить проблему непротиворечивости — задача безнадежная.
Сколько бы сотен миллионов теорем мы ни доказали, не может быть уверенности, что в следующей теореме мы не наткнемся на противоречие.
А теперь мы хотим доказать: если противоречива геометрия Лобачевского, то непременно противоречива и геометрия Евклида.
Однако на первый взгляд и здесь не видно ясного пути.
Правила игры (аксиомы) различны. Правда, отличаются геометрии лишь одной аксиомой — аксиомой о параллельных, но в принципе дела это не меняет.
Игры разные. И совершенно неясно, как вообще можно перекинуть связующий мост между ними.
Тем не менее это оказалось возможно.
Боюсь, что различные аналогии, призванные пояснять, лишь затуманят суть, и потому прямо перейду к доказательству. Автор его — один из крупнейших математиков XIX века Феликс Клейн. О нем, конечно, стоило бы рассказать. Был он интересный и сложный человек, но, к сожалению, нам невозможно слишком увлекаться историей. Я хочу только привести один поразивший меня в свое время факт.
Клейн прожил долгую жизнь. И если взять только те его работы, что были им выполнены после 30–35 лет, то по любым меркам — перед нами великолепный разносторонний ученый. Активный, тонкий, плодовитый математик, блестящий знаток прошлого своей науки, один из лучших педагогов за всю историю математики.
Сам он жестко и безапелляционно написал, что после 30 лет в результате нервного переутомления, вызванного исследованием одной математической проблемы он никогда больше не был способен к творческой деятельности. Он не кокетничал. Он действительно думал именно так. И признаюсь, меня подкупают люди такого склада. Другой вопрос — облегчает ли им жизнь такая беспощадность к себе?
Итак, доказательство.
Сначала мы «играем» в евклидову геометрию. Рассмотрим обычный круг. Проведем в нем хорду. Возьмем какую-нибудь точку, не лежащую на этой хорде. Ясно, что через эту точку можно провести бесчисленное число других хорд, не пересекающих нашу. Это все хорды, уместившиеся между двумя пересекающими нашу в ее крайних точках; там, где она пересекается с окружностью.
Пока все до наивности ясно. Неясно только, какое отношение этот круг может иметь к геометрии Лобачевского.
И сейчас произойдет удивительное.
Идея Клейна в том, что он превращает этот тривиальный круг в модель плоскости Лобачевского.
Вот как это происходит.
Повторим старое заклинание.
Математику все равно, что такое его Основные Понятия. Лишь бы удовлетворялись аксиомы.
И начинается двойная игра.
Мы называем:
круг — плоскостью Лобачевского;
любую хорду в круге — прямой Лобачевского;
точку — точкой Лобачевского.
Естественно, мы должны добавить новые понятия: «соотношения», «лежать между», «принадлежать» и «движение».
Добавим их. А после этого попробуем сыграть с этими евклидовыми элементами в «геометрию Лобачевского».
Чтобы проделать это, надо будет обратиться к списку аксиом и проверить, удовлетворяют ли наши элементы аксиомам геометрии Лобачевского.
Сравнительно легко можно убедиться, что с большинством аксиом все в порядке.
Все великолепно и с аксиомой о параллельных — единственной, отличающей геометрию Лобачевского от геометрии Евклида: «Через данную точку к данной «прямой» можно провести бесчисленное множество непересекающих ее «прямых».
Пока из чувства перестраховки я ставлю кавычки у слова «прямая». Но стоит доказать, что для наших понятий выполняются все аксиомы геометрии Лобачевского, — и кавычки можно будет смело убрать.
Не забывайте только — идет двойная игра. Мы все время должны «переводить» с языка евклидовой геометрии на язык геометрии Лобачевского. И наоборот.
С понятиями «принадлежать» и «лежать между» все хорошо. На обоих языках они одинаковы. Трудности начинаются, когда мы переходим к движению.
Понятие «движение» должно удовлетворить всей группе аксиом движения.
Мы заявили, что наш круг — плоскость Лобачевского. Очень хорошо. Мы можем определить движение в этой плоскости Лобачевского. Это движение обязано удовлетворять всем положенным ему аксиомам. (Их стоит сейчас посмотреть в приложении к третьей главе.)
Тоже хорошо. Но неясно, можно ли сформулировать это понятие движения неевклидовой плоскости на языке евклидовой геометрии.
Неевклидова плоскость в нашем случае на евклидовом языке — круг. Движение, вспоминаем мы, — это взаимно однозначное преобразование плоскости самой в себя. Значит, на евклидовом языке мы должны найти какое-то преобразование круга самого в себя.
Один класс таких преобразований сразу назойливо напрашивается. Это простые повороты круга относительно его центра. Однако легко убедиться, что эти преобразования не годятся как кандидаты в «неевклидово движение».