Впрочем, пе зря говорят, что ничто не ново под лупой, а новое — это только хорошо забытое старое. Еще в начале XVII в. Галилей размышлял о противоречиях бесконечного и обнаружил возможность взаимно однозначного соответствия между множеством натуральных чисел и множеством их квадратов. В его книге "Беседы и математические доказательства, относящиеся к механике по местному движению" (1638 г.) приведен диалог, в котором Сальвиати, выражающий мысли самого Галилея, говорит:
"Сказанное нами относится к числу затруднений, происходящих вследствие того, что, рассуждая нашим ограниченным разумом о бесконечном, мы приписываем последнему свойства, известные нам по вещам конечным и ограниченным. Между тем это неправильно, так как такие свойства, как большая и меньшая величина и равенство, неприменимы к бесконечному, относительно которого нельзя сказать, что одна бесконечность больше или меньше другой или равна ей".
В подтверждение своей мысли Сальвиати отмечает, что, с одной стороны, "квадратов столько же, сколько существует корней, так как каждый квадрат имеет свой корень и каждый корень — свой квадрат; ни один квадрат не может иметь более одного корня, и ни один корень — более одного квадрата...[47]
При этом число корней равно количеству всех чисел вообще, потому что нет ни одного числа, которое не могло бы быть корнем какого-нибудь квадрата; установив это, приходится сказать, что число квадратов равно общему количеству всех чисел..."С другой стороны, Сальвиати отмечает, что "количество всех чисел вместе — квадратов и неквадратов — больше, нежели одних только квадратов", причем "числа квадратов непрерывно и в весьма большой пропорции убывают по мере того, как мы переходим к большим числам". В качестве единственного выхода из обнаруженного противоречия Сальвиати предлагает следующее:
"Я не вижу возможности никакого другого решения, как признать, что бесконечно количество чисел вообще, бесконечно число квадратов, бесконечно и число корней. Нельзя сказать, что число квадратов меньше количества всех чисел, а последнее больше: в конечном выводе свойства равенства, а также большей и меньшей величины не имеют места там, где дело идет о бесконечности, и применимы только к конечным количествам".
Мы видим, что Галилей, по сути дела, владел идеей взаимно однозначного соответствия и видел, что такое соответствие можно установить между множеством всех натуральных чисел и множеством квадратов, а потому эти множества можно считать имеющими одинаковое количество элементов. Понимал он и то, что для бесконечных множеств часть может быть равной целому. Но отсюда он сделал неверный вывод, что все бесконечности одинаковы: он имел дело лишь с бесконечными подмножествами натурального ряда, а их можно перенумеровать.
Галилей не мог себе представить, что множество всех точек отрезка перенумеровать нельзя (это вскоре будет показано). Подобно атомистам древности, он полагал, что отрезок складывается из поддающейся пересчету бесконечной совокупности атомов.
Счетные множества.
Все множества, которые имеют столько же элементов, сколько имеет множество натуральных чисел, называют счетными. Иными словами, множество называется счетным, если оно бесконечно, но его элементы можно перенумеровать натуральными номерами. Например, множество четных чисел, множество нечетных чисел, множество простых чисел, да и вообще любая бесконечная часть множества натуральных чисел являются счетными множествами.
Иногда, для того чтобы установить счетиость того или иного множества, надо проявить изобретательность. Возьмем, например, множество всех целых чисел (как положительных, так и отрицательных):
..., -n, ..., -3, -2, -1, 0, 1, 2, 3, ..., n, ...
Если мы попробуем нумеровать его по порядку, начиная с какого-нибудь места, то никогда эту нумерацию не закончим. Поэтому все числа до выбранного места останутся незанумерованными. Чтобы не пропустить при нумерации ни одного числа, надо записать это множество в виде двух строк
и нумеровать по столбцам. При этом 0 получит № 1, -1 — № 2, 1 — № 3, -2 — № 4 и т. д. Иными словами, все положительные числа и нуль нумеруются нечетными числами, а все отрицательные целые числа — четными. Это похоже на то, как директор гостиницы поместил всех филателистов в гостиницу, заполненную космозоологами.
Но если в то, что множество всех целых чисел счетно, легко поверить, то в счетность множества рациональных чисел поверить труднее. Ведь рациональные числа расположены очень густо — между любыми двумя рациональными числами найдется еще бесконечно много рациональных чисел. Поэтому совершенно непонятно, как их нумеровать; кажется, что между любыми двумя числами надо перенумеровать еще бесконечно много чисел и этот процесс никогда не закончится. И действительно, занумеровать рациональные числа в порядке возрастания их величины невозможно.
Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное