После конца приема я сел в свою фотонную ракету и полетел на Землю. Мне нужно было рассказать всем земным космонавтам о новом пристанище в космосе. Кроме того, я хотел проконсультироваться с виднейшими математиками Земли и моим другом профессором Тарантогой о свойствах бесконечных множеств.
От автора.
На этом мы временно расстанемся с нашим героем. Многое в его рассказе вызывает сомнения — ведь по законам теории относительности невозможно передавать сигналы со скоростью, большей чем
Дальнейшая часть книги посвящается рассказу о теории бесконечных множеств. И хотя события будут развертываться не в межзвездном пространстве, а на отрезке [0, 1] или квадрате со стороной 1, многие из них окажутся не менее необычайными.
Как сравнивать множества. В начале главы мы занимались вопросами, общими для конечных и для бесконечных множеств. Теперь мы займемся свойствами, характерными только для бесконечных множеств. Из рассказа Иона Тихого уже известно, что эти свойства сильно отличаются от свойств конечных множеств — вещи, невозможные для конечных множеств, оказываются возможными для бесконечных.
Первый вопрос, который мы сейчас разберем, это вопрос о сравнении друг с другом бесконечных множеств. Для конечных множеств самой разной природы всегда можно сказать, какое из них содержит больше элементов, а какое меньше. Для бесконечных же множеств этот вопрос становится гораздо более сложным. Например, чего больше, натуральных чисел или рациональных, рациональных или действительных? Где больше точек, на отрезке или на всей прямой, на прямой или в квадрате?
На первый взгляд кажется, что ответить на эти вопросы совсем просто. Ведь множество натуральных чисел является частью множества рациональных чисел, а отрезок-частью прямой. Не ясно ли, что поэтому натуральных чисел меньше, чем рациональных, а точек на отрезке меньше, чем точек на всей прямой? Оказывается, не ясно. Ведь ниоткуда не следует, что при переходе к бесконечным множествам сохранятся .законы, выведенные из рассмотрения конечных множеств, например закон о том, что "часть меньше целого".
А самое главное, попытка сравнения бесконечных множеств по тому признаку, что одно является частью другого, заранее обречена на неудачу. Например, где больше точек, в квадрате или на всей бесконечной прямой? Ведь ни квадрат нельзя вложить в прямую линию, пи прямую линию нельзя, не ломая ее, поместить в квадрат. Разумеется, можно разломать прямую линию на отрезки, длина которых равна стороне квадрата, и после этого каждый отрезок поместить в квадрат так, чтобы они не пересекались друг с другом. Но вдруг и квадрат можно как-то разбить на части, а потом эти части положить на прямую, чтобы они не задевали друг друга? А сколько есть бесконечных множеств, не являющихся частями друг друга! Множество квадратов на плоскости и множество кругов на той же плоскости не имеют ни одного общего элемента. Как же сравнить их? Как узнать, чего больше во Вселенной — атомов азота или кислорода?
Итак, задача поставлена. В первую очередь мы выясним, в каком случае надо говорить, что одно множество содержит столько же элементов, сколько и второе. Иными словами, выясним, в каких случаях два бесконечных множества имеют "поровну" элементов.
На танцплощадке.
Для конечных множеств задача сравнения решается просто. Чтобы узнать, одинаково ли число элементов в двух множествах, достаточно пересчитать их. Если получатся одинаковые числа, то, значит, в обоих множествах поровну элементов. Но для бесконечных множеств такой способ не годится, ибо, начав пересчитывать элементы бесконечного множества, мы рискуем посвятить этому делу всю свою жизнь и все же не закончить начатого предприятия.
Но и для конечных множеств метод пересчета не всегда удобен. Мы на танцплощадке. Как узнать, поровну ли здесь юношей и девушек? Конечно, можно попросить юношей отойти в одну сторону, а девушек в другую и заняться подсчетом как тех, так и других. Но, во-первых, мы получим при этом избыточную информацию, нас не интересует, сколько здесь юношей и девушек, а интересует лишь, поровну ли их. Во-вторых, не для того собралась молодежь на танцплощадке, чтобы стоять и ждать конца пересчета, а для того, чтобы потанцевать. Удовлетворим их желание и попросим оркестр сыграть какой-нибудь танец, который все умеют танцевать. Тогда юноши пригласят девушек на танец и наша задача будет решена. Ведь если окажется, что все юноши и все девушки танцуют, то есть если вся молод ежь разбилась на танцующие пары, то ясно, что на площадке ровно столько же юношей, сколько и девушек.
Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное