Тем временем появилось и второе направление атаки, тоже геометрическое и тоже основанное на кривизне, но исходящее из совершенно иной области: математической физики. Гаусс, Риман и целая школа итальянских геометров создали общую теорию искривленных пространств, получивших название многообразий, причем концепция расстояния у них необыкновенно расширила и евклидову, и классическую неевклидову геометрию. Кривизна уже не обязана быть постоянной: она может плавно меняться от одного конца к другому. К примеру, фигура, напоминающая собачью косточку, имеет положительную кривизну на концах, но отрицательную посередине, и величина кривизны изменяется плавно от одного участка к другому. Кривизна квантифицируется при помощи математических инструментов, известных как тензоры. Около 1915 г. Альберт Эйнштейн понял, что тензоры кривизны — это именно то, чего ему не хватало для расширения специальной теории относительности, описывающей пространственно-временные отношения, до общей теории относительности, включающей также и гравитацию. В этой теории гравитационное поле представлено как кривизна пространства, а эйнштейновы уравнения поля описывают, как соответствующая мера кривизны — тензор кривизны — изменяется в зависимости от распределения материи. В результате кривизна пространства
Ричард Гамильтон, специалист по римановой геометрии, понял, что тот же фокус можно применить в более общем плане и что результатом этого может стать доказательство гипотезы Пуанкаре. Идея состояла в том, чтобы работать с одной из простейших мер кривизны, именуемой кривизной Риччи в честь итальянского геометра Грегорио Риччи-Курбастро. Гамильтон записал уравнение, определявшее, как кривизна Риччи должна изменяться со временем: уравнение потока Риччи. Согласно этому уравнению, кривизна должна была постепенно перераспределиться и стать как можно более равномерной. Картина немного напоминает кошку под ковром из главы 4, но теперь кошка, хотя и не может сбежать, способна растечься по полу ровным слоем. (Говоря иначе, кошка здесь должна быть топологической.)
К примеру, в двумерном случае начнем с грушевидной поверхности (см. рис. 41). На одном конце она имеет область сильной положительной кривизны. Область на другом, более толстом конце тоже положительно искривлена, но не так сильно, а в промежутке грушу опоясывает область с отрицательной кривизной. По существу, поток Риччи переносит кривизну с сильно искривленного конца (и в меньшей степени с другого конца) в отрицательно искривленную область до тех пор, пока вся отрицательная кривизна не будет поглощена. На этой стадии результат — бугристая поверхность с повсеместно положительной кривизной. Поток Риччи продолжает перераспределять кривизну, забирая ее из сильно искривленных областей и перенося в менее искривленные. Время идет, и поверхность становится все ближе и ближе к той единственной форме, что имеет постоянную положительную кривизну, т. е. к евклидовой сфере. Топология остается прежней, хотя форма, если посмотреть подробнее, меняется. Следуя потоку Риччи, можно доказать что первоначальная грушевидная поверхность топологически эквивалентна сфере.
В этом примере топологический тип поверхности был очевиден с самого начала, однако та же общая стратегия действует для любого многообразия. Начните со сложной формы и следуйте за потоком Риччи. Со временем кривизна перераспределяется более равномерно, и форма упрощается. В конце концов вы должны получить простейшую форму с той же топологией, что и у первоначального многообразия, какой бы эта топология ни была. В 1981 г. Гамильтон доказал, что такая стратегия работает в двух измерениях, обеспечивая новое доказательство теоремы о классификации для поверхностей.