Однако дьявол, как всегда, кроется в деталях, а в математике детали бывают дьявольски непокорными! Работу необходимо было проверить, не спеша и на полную глубину, причем сделать это должны были те, кто разбирается в соответствующих областях и в состоянии распознать потенциальные ловушки. А это было непросто, поскольку Перельман в своей работе свел воедино по крайней мере четыре очень разные области математики и математической физики, а мало кто из математиков может похвастать знаниями более чем в одной-двух областях. Анализ корректности его доказательства потребовал бы много усилий и командной работы. Более того, в препринтах на сайте arXiv не было всех подробностей, необходимых в публикуемой статье. Для препринтов они были написаны довольно ясно, но точки над i там были расставлены не все. Так что экспертам нужно было реконструировать часть рассуждений Перельмана — при том, что сам-то он занимался этой работой несколько лет!
На все это требовалось время. Перельман читал лекции по своему доказательству и отвечал по электронной почте на вопросы, касавшиеся различных его этапов. Всякий раз, как кто-нибудь находил кажущуюся прореху, он быстро откликался, объяснял необходимое и заполнял пробелы. Все выглядело обнадеживающе. Однако никто не собирался рисковать репутацией и заявлять публично, что Перельман доказал гипотезу Пуанкаре и, тем паче, еще более сложную гипотезу о геометризации. Нужна была полная уверенность в том, что доказательство безошибочно. Поэтому, несмотря на общее благосклонное отношение к работе Перельмана, публичного признания она поначалу не получила. Это было ожидаемо, но время шло, и Перельмана все больше охватывало раздражение, потому что, как ему казалось, он впустую тратил время. Он-то
Некоторые писали, что математическое сообщество было несправедливо к Перельману. Но те, кто так говорят, просто не понимают, как принято действовать, когда появляется заявка на решение одной из великих задач. Было бы безответственно просто похлопать автора по плечу, сказать: «Отлично! Молодец!» — и забыть о том, чего не хватает в его препринтах. Вполне справедливо было попросить его подготовить более подробное изложение доказательства, пригодное для публикации. Когда речь идет о столь важной задаче, спешить нельзя. Специалисты из кожи вон лезли, тратили кучу времени на доказательство Перельмана и больше обычного старались сдержать свой естественный скептицизм. Сказать по правде, к автору отнеслись даже
К этому моменту, однако, Перельман успел потерять терпение. Возможно, сказалось и то, что решенная им задача была настолько значительной, что ничто, по существу, уже не могло с ней сравниться. Он был как альпинист, сумевший подняться на Эверест в одиночку и без кислорода. Сравнимых вызовов просто не осталось. Успех в средствах массовой информации его не прельщал: он ждал признания со стороны равных, а не со стороны телеведущих всех сортов. Потому можно понять, почему, когда коллеги наконец признали, что он прав и предложили ему Филдсовскую медаль и премию Института Клэя, он не захотел принять эти награды.
Доказательство Перельмана отличается глубиной и элегантностью и открывает перед исследователями целый новый мир топологии. Автор сумел реализовать план Гамильтона по потоку Риччи, придумав хитрые способы обойти существование сингулярностей. Один из таких способов заключается в том, чтобы изменить масштабы пространства и времени и таким образом избавиться от сингулярности. Когда такой подход не работает, говорят, что сингулярность схлопывается. В подобных случаях Перельман анализирует геометрию потока Риччи в подробностях и разбирает, как именно может произойти схлопывание. По существу, пространство как бы выпускает бесконечно тонкие щупальца, иногда во множестве, как ветви дерева. Если какая-то ветка близка к схлопыванию, ее можно срезать и заменить гладкой крышечкой. Перед некоторыми из этих щупальцев поток Риччи буксует: если так, оставляем их в покое. Если же нет, поток Риччи можно запустить заново. В итоге некоторые щупальца заменяются гладкими крышками, а другие временно прерываются, но поток продолжает работать.