Читаем Величайшие математические задачи полностью

Кроме того, он добился значительного прогресса в аналогичной стратегии для трехмерных многообразий, но здесь возникло серьезное препятствие. В двух измерениях любая поверхность автоматически упрощается, следуя потоку Риччи. Это верно и в трех измерениях, если первоначальное многообразие во всех точках имеет строго положительную кривизну и нигде — нулевую или отрицательную. К несчастью, если в многообразии есть точки с нулевой кривизной — а они часто есть, — пространство, двигаясь в потоке, может запутаться. При этом возникают сингулярности — места, где многообразие перестает быть гладким. В таких точках уравнение потока Риччи не работает, и перераспределение кривизны прекращается. Естественный способ обойти это препятствие заключается в том, чтобы понять, что представляют собой сингулярности, и изменить многообразие — может быть, разрезать его на куски, чтобы можно было дать стартовый толчок потоку Риччи. Такая стратегия может оказаться успешной, если вы в достаточной степени контролируете связь топологии измененного многообразия к первоначальной. К несчастью, Гамильтон понял также, что для трехмерных пространств сингулярности потока Риччи могут быть чрезвычайно сложными — судя по всему, слишком сложными, чтобы применять подобные уловки. В общем, поток Риччи быстро стал в геометрии стандартным методом, но для доказательства гипотезы Пуанкаре его не хватило.

К 2000 г. гипотеза по-прежнему оставалась не доказанной; после вхождения в число семи проблем тысячелетия она приобрела еще более широкую известность и признание. К тому моменту стало ясно, что если каким-то образом удастся все же добиться, чтобы идея Гамильтона сработала, то тем самым будет доказана не только гипотеза Пуанкаре, но и гипотеза Терстона о геометризации. Приз был соблазнителен и близок, но в руки не давался.

В математике, как и в остальных отраслях науки, работа, чтобы ее признали, должна быть опубликована, а для этого — пройти рецензирование. Специалисты в соответствующей области должны внимательно прочитать работу, проверить логические выкладки и убедиться в безошибочности вычислений. Для сложной и значительной математической работы этот процесс может занять немало времени. Как упоминалось в главе 4, раньше выходом в каких-то ситуациях становился препринт, но сегодня существует стандартный веб-сайт arXiv.org, своеобразный архив, где после частичного рассмотрения и утверждения (чтобы отсечь всякие глупости) разрешается размещать электронные препринты. В настоящее время большинство исследователей знакомится с новыми результатами на сайте arXiv или на собственном сайте автора.

В 2002 г. Григорий Перельман разместил на сайте arXiv препринт о потоке Риччи. В работе было сделано замечательное утверждение: поток Риччи градиентоподобен. Иными словами, существует вполне определенное направление вниз — единственная числовая величина, связанная с формой многообразия, и многообразие всегда течет вниз в том смысле, что эта величина всегда уменьшается со временем. Она чем-то напоминает высоту в ландшафте и позволяет количественно оценить «упрощение» многообразия. Градиентоподобные потоки имеют немало ограничений: к примеру, они не могут ходить кругами или вести себя хаотично. Никто, похоже, не подозревал, что поток Риччи окажется таким ручным. Но Перельман не просто выдвинул предположение: он доказал это. В конце он наметил цепочку рассуждений, которые должны были бы доказать гипотезу Терстона о геометризации — а она, если помните, подразумевает гипотезу Пуанкаре, но заходит на самом деле гораздо дальше, — и пообещал подробнее изложить все это в следующих статьях на сайте arXiv. В течение следующих восьми месяцев он разместил там две статьи, содержавшие большую часть обещанных подробностей.

Первая статья вызвала немалый переполох. Перельман утверждал, что ему удалось реализовать всю программу Гамильтона — использовать поток Риччи для упрощения трехмерного многообразия и доказать, что результат получился в точности таким, как предсказывал Терстон. Две другие статьи добавили рассуждениям Перельмана убедительности: у математиков возникло чувство, что это человек знает, о чем говорит, и что его идеи — не просто очередная правдоподобная стратегия с неизменной логической прорехой или недоказанным допущением. Обычный скепсис математического сообщества по отношению к любым заявлениям о решении одной из великих задач слегка поутих. Возникло ощущение, что его попытка вполне может увенчаться успехом.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное