Если говорить о хорошем, то здесь у нас появляются немалые возможности. Можно сказать, что гипотеза Ходжа лучше представляет реальную математику XX и XXI вв., чем любая другая из рассмотренных в этой книге тем. Подойдя к ней надлежащим образом, мы сможем получить представление о том, насколько концептуально продвинута на самом деле современная передовая математика. В сравнении со школьной математикой она как Эверест в сравнении с кучкой земли, оставленной кротом.
Но, может быть, это всего лишь пустое сотрясание воздуха, претенциозная чепуха, которой занимаются отшельники в башнях из слоновой кости? Если ни один нормальный человек не в состоянии понять, о чем идет речь, зачем впустую переводить деньги налогоплательщиков на тех, кто думает о подобных вещах? Однако давайте взглянем на это с другой стороны. Предположим, любой человек мог бы понять все, о чем думают математики. Неужели тогда вы с удовольствием отдали бы математикам деньги налогоплательщиков? Разве им платят не за профессиональные знания? Если бы все было настолько просто и понятно, что разобраться в этом мог бы любой, зачем вообще надо было бы готовить математиков? А если бы каждый умел налаживать центральное отопление и сваривать трубы, для чего были бы нужны водопроводчики?
Я не могу сказать вам, как именно могла бы быть с пользой применена гипотеза Ходжа. Но я могу объяснить, насколько важное место она занимает в математике. Современная математика — единый организм, так что значительное продвижение в любой из основных областей со временем принесет вполне материальный доход, измеряемый в долларах и центах. Может быть, сегодня мы не найдем на своей кухне ни одного прибора, сделанного на основе этой гипотезы, но завтра — кто знает? Тесно связанные с ней математические концепции уже доказывают свою полезность в различных областях науки — от квантовой физики и теории струн до робототехники.
Иногда новые математические идеи получают практическое применение почти сразу. Иногда этот процесс занимает не одно столетие. Быть может, в последнем случае лучше было бы подождать, пока возникнет нужда в этих идеях, а затем ударными темпами провести их разработку? Быть может, все математические задачи, не имеющие немедленного и очевидного применения, следует откладывать в дальний ящик на будущее? Однако если бы мы так поступали, то всегда отставали бы от жизни, поскольку математики уже несколько сотен лет играют в догонялки с прикладной наукой. Да и не всегда можно точно сказать, какая идея необходима в данный момент. Как вы думаете, понравилось бы вам, если бы никто даже не задумался о производстве кирпичей, пока вы не пригласили бы рабочих для строительства дома? Чем оригинальнее математическая концепция, тем более маловероятно, что она родится в результате ударной разработки.
Куда разумнее было бы позволить математической науке развиваться по собственным законам и не ждать от нее немедленной пользы. Не пытайтесь выбирать лучшее, позвольте ей расти свободно. Математики стоят недорого: им, в отличие от физиков-экспериментаторов, не нужно дорогостоящее оборудование (на Большой адронный коллайдер уже потрачено €7,5 млрд, и расходы растут). Кроме того, в качестве компенсации математики обучают студентов. И вряд ли было бы разумно не разрешить некоторым из них работать над гипотезой Ходжа, если эта проблема их захватила.
Я планирую разобрать приведенную формулировку гипотезы Ходжа слово за словом. Простейшая из встречающихся в ней концепций — «алгебраическое многообразие». Это естественное следствие декартова подхода, когда тот при помощи координатной сетки связал геометрию с алгеброй (см. главу 3). При этом крохотный набор инструментов-кривых, введенный Евклидом и его последователями, — прямая, окружность, эллипс, парабола, гипербола — превратился в бездонный рог изобилия. Прямая линия — основа евклидовой геометрии — представляет собой совокупность точек, удовлетворяющих соответствующему алгебраическому уравнению: к примеру,