Читаем Величайшие математические задачи полностью

Рациональные решения уравнений эллиптических кривых обладают одним поразительным свойством: благодаря геометрической конструкции, показанной на рис. 28 в главе 6, они образуют группу. Получившаяся структура называется группой Морделла — Вейля, и специалисты по теории чисел очень хотели бы иметь возможность вычислять ее. Для этого нужно найти систему генераторов: рациональных решений, из которых при помощи оператора группы могут быть получены все остальные. Если это не удается, то хотелось бы по меньшей мере определить основные характеристики группы, хотя бы ее величину. Здесь, однако, многое еще непонятно. Иногда группа бесконечна и порождает бесконечно много рациональных решений, иногда конечна, и тогда число рациональных решений тоже конечно. Было бы полезно иметь возможность определить, к какой категории относится конкретный случай. Но что нам по-настоящему хотелось бы знать, так это абстрактную структуру группы.

Доказательство Морделла, что конечный список генерирует все решения, говорит о том, что группа должна состоять из конечной группы и решетчатой группы. Решетчатая группа включает в себя все списки целых чисел конкретной конечной длины. Если длина чисел, к примеру, три, то группа состоит из всех списков (m1, m2, m3) целых чисел, и эти списки складываются очевидным образом:

(m1,m2,m3) + (n1,n2,n3) = (m1 +n1, m2 +n2, m3 +n3).

Длина списка называется рангом группы (и геометрически представляет собой размерность решетки). Если ранг группы 0, группа конечна. Если ранг не равен нулю, группа бесконечна. Поэтому, чтобы понять, сколько существует решений, нам необязательно знать полную структуру группы. Достаточно знать ее ранг. Именно об этом говорит гипотеза Берча — Свиннертон-Дайера.

В 1960-е гг., когда компьютеры только-только входили в нашу жизнь, одна из первых таких машин появилась в Кембриджском университете. Называлась она EDSAC, что означало «электронно-счетная машина с запоминающим устройством на линиях задержки». Название показывает, как гордились создатели этой машины устройством ее памяти, посылавшей звуковые волны по трубкам с ртутью и затем направлявшей их вновь к началу. Размером этот компьютер был с большой грузовик. Я хорошо помню, как в 1963 г. мне устроили экскурсию по нему. Цепи компьютера были сделаны на основе тысяч ключей — электронных ламп. Вдоль всех стен стояли широкие стеллажи с запасными лампами, которые то и дело надо было менять — так часто они сгорали.

Питера Свиннертон-Дайера эллиптические кривые интересовали с диофантовой стороны: в первую очередь ему хотелось понять, сколько существовало бы решений, если заменить кривую ее аналогом на конечном поле с простым числом p элементов. Иными словами, ему хотелось изучить применявшуюся Гауссом уловку с работой «по модулю p». При помощи компьютера он вычислял эти числа для большого числа простых и искал среди них интересные закономерности.

Постепенно у него появились определенные подозрения. Его научный консультант Джон Кассельс испытывал сильные сомнения, но по мере появления все новых и новых данных он тоже поверил, что в этой идее что-то есть. Компьютерные эксперименты, проведенные Свиннертон-Дайером, указывали вот на что. У специалистов по теории чисел есть стандартный метод записи любого уравнения в целых числах по определенному модулю — вспомните модулярную арифметику или «арифметику часов» по модулю 12 в главе 2. Поскольку все законы алгебры приложимы в этом варианте арифметики, любое решение первоначального уравнения становится и решением «урезанного» уравнения по этому модулю. Все задействованные числа образуют конечный список — к примеру, для арифметики часов в этом списке всего 12 чисел, — поэтому все решения можно найти методом проб и ошибок. В частности, для каждого заданного модуля можно подсчитать, сколько существует решений. Кроме того, решения по каждому модулю накладывают определенные ограничения на решения первоначального уравнения и иногда даже помогают доказать, что такие решения существуют. Поэтому у специалистов по теории чисел выработался рефлекс рассматривать варианты любого уравнения по разным модулям, и простые числа особенно полезны в качестве таковых.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное