На алгебраическом языке задача звучит так: для каких целых
Некоторые числа не являются конгруэнтными: к примеру, можно доказать, что 1, 2, 3 и 4 неконгруэнтны. С другой стороны, 5, 6 и 7, напротив, конгруэнтны. В самом деле, площадь треугольника со сторонами 3, 4, 5 равна 3 × 4/2 = 6, что доказывает конгруэнтность числа 6. Чтобы доказать конгруэнтность числа 7, заметим, что треугольник со сторонами (24/5)², (35/12)² и (337/60)² также прямоугольный и его площадь равна 7. К числу 5 я вернусь чуть позже. Рассматривая числа поочередно, одно за другим, мы получим длинный список конгруэнтных чисел, но вряд ли прольем много света на их природу. Никакое количество конкретных примеров не докажет, что какое-то конкретное целое число
Сегодня мы знаем, что эта задача далеко выходит за рамки всего, что Диофант хотя бы в принципе мог решить. Более того, этот обманчиво простой вопрос полностью не разрешен до сих пор. Максимум, что нам удалось получить, — характеризация конгруэнтных чисел, открытая Джеральдом Таннеллом в 1983 г. Идея Таннелла позволяет получить алгоритм для определения, может ли данное целое число возникать в соответствующих ситуациях при помощи расчета его представлений в виде двух различных комбинаций квадратов. При небольшой изобретательности этот расчет годится для достаточно больших целых чисел. Эта характеризация имеет всего один серьезный недостаток: никто еще не доказал, что она верна. Ее адекватность зависит от решения одной из задач тысячелетия — гипотезы Берча — Свиннертон-Дайера. Эта гипотеза предлагает критерий, при котором эллиптическая кривая имеет конечное число рациональных точек. Мы уже встречали эти диофантовы уравнения в главе 6 (гипотеза Морделла) и главе 7 (Великая теорема Ферма). В этой главе мы еще раз увидим, какую выдающуюся роль они играют в теории чисел.
Самая ранняя из европейских работ, посвященных этим вопросам, принадлежит перу Леонардо Пизанского. Нам Леонардо по прозвищу Фибоначчи известен прежде всего благодаря последовательности странных чисел, которую он, судя по всему, изобрел. Числа эти возникали в ходе решения арифметической задачи о размножении каких-то невероятных кроликов. Вот числа Фибоначчи:
В этом ряду каждое число после двух первых представляет собой сумму двух предыдущих чисел. Отцом Леонардо был таможенный чиновник по имени Боначчо, и знаменитое прозвище означает «сын Боначчо». У нас нет никаких данных о том, что это прозвище использовалось при жизни Леонардо. Считается, что его придумал французский математик Гийом Либри в XIX в. Как бы то ни было, числа Фибоначчи широко известны и обладают множеством поразительных свойств. Они даже фигурируют в крипто-конспирологическом триллере Дэна Брауна «Код да Винчи».
Леонардо представил свои числа Фибоначчи в учебнике по арифметике «Книга счета» (Liber Abbaci), написанном в 1202 г. Основной целью учебника было привлечь внимание европейцев к придуманной арабами новой форме записи чисел, в основе которой лежали десять цифр от 0 до 9, и продемонстрировать ее универсальность. Сама идея десятичной записи уже достигла Европы через текст аль-Хорезми 825 г., названный в латинском переводе «Об индийском счете» (Algoritmi de Numero Indorum), но книга Леонардо стала первой из тех, что были написаны именно для того, чтобы способствовать внедрению десятичной системы в Европе. Значительная часть книги посвящена практической арифметике, в первую очередь операциям по обмену денег. Кроме этого, Леонардо написал еще одну книгу. Она не так известна, хотя во многих отношениях является непосредственным преемником диофантовой «Арифметики». Называется она «Книга квадратов» (Liber Quadratorum).