Читаем Величайшие математические задачи полностью

Подобно Диофанту, Леонардо представлял общие методики через конкретные примеры. Один из них основывался на вопросе аль-Караджи. В 1225 г. Пизу посетил император Фридрих II. Он был наслышан о Леонардо и его математических занятиях и, судя по всему, решил, что будет забавно объявить математический турнир и посмотреть на него в деле. В то время подобные публичные состязания были обычным делом. Участники задавали друг другу вопросы. В команду императора входили Джованни из Палермо и магистр Теодор. В команду Леонардо входил только сам Леонардо. Команда императора попросила Леонардо найти такой квадрат, который остался бы квадратом, если вычесть из него или прибавить к нему 5. Как обычно, все числа должны были быть рациональными. Иными словами, соперники хотели, чтобы Леонардо доказал, что 5 — число конгруэнтное, отыскав конкретное рациональное число x, для которого x − 5, x и x + 5 являются квадратами.

Эту задачу ни в коем случае нельзя назвать простой — самое краткое ее решение таково:



В этом случае



Леонардо нашел решение и включил его в «Книгу квадратов». Он получил ответ при помощи общей формулы, связанной с формулой Евклида/Диофанта для пифагоровых троек. Из нее Леонардо получил три целых квадрата с общей разностью 720, а именно: 31², 41² и 49². Затем он разделил их на 12² = 144, чтобы получить три квадрата с общей разностью 720/144, что равняется 5{38}. В терминах пифагоровых троек можно взять треугольник со сторонами 9, 40 и 41 и площадью 180 и разделить на 36. Получим треугольник со сторонами 20/3, 3/2, 41/6. Площадь его равняется 5.

Именно у Леонардо мы находим латинское слово congruum для обозначения набора из трех квадратов в арифметической прогрессии. Позже Эйлер пользовался словом congruere, «сходятся». Первые десять конгруэнтных чисел и соответствующие простейшие пифагоровы тройки приведены в табл. 3. Никаких простых закономерностей здесь не видно.


Таблица 3. Первые десять конгруэнтных чисел и соответствующие им пифагоровы тройки


Первоначальным прогрессом в этом вопросе мы обязаны в первую очередь арабским математикам, показавшим, что числа 5, 6, 14, 15, 21, 30, 34, 65, 70, 110, 154 и 190, а также еще 18 больших чисел, являются конгруэнтными. Леонардо, Анджело Дженокки (1855) и Андре Жерарден (1915 г.) добавили к этим числам 7, 22, 41, 69, 77 и еще 43 числа, не превосходящих 1000. Леонардо в 1225 г. объявил, что число 1 не конгруэнтно, но не привел никаких доказательств. В 1569 г. Ферма доказал это. К 1915 г. все конгруэнтные числа меньше 100 были определены, но проблема плохо поддавалась решению, и еще в 1980 г. статус многих чисел меньше 1000 оставался неопределенным. О сложности проблемы можно судить по тому, как Л. Бастьен открыл конгруэнтность числа 101. Стороны соответствующего прямоугольного треугольника равны:



Он нашел эти числа в 1914 г. вручную. К 1986 г., когда считать благодаря компьютерам стало проще, Г. Крамарц нашел все конгруэнтные числа до 2000.

В какой-то момент было замечено, что другое, но связанное с этой задачей уравнение y² = x³ — d²x имеет решение x, y в целых числах тогда и только тогда, когда d конгруэнтно{39}. В одном направлении это наблюдение очевидно: правая часть уравнения представляет собой произведение x, x — d и x + d, а если все сомножители являются квадратами, то квадратом является и произведение. Обратное утверждение получить также несложно. Такая формулировка задачи сразу переводит ее в богатые и процветающие владения теории чисел. Для любого заданного d это уравнение задает y², равный кубическому многочлену от x, и таким образом определяет эллиптическую кривую. Так что проблема конгруэнтных чисел — частный случай вопроса, ответить на который мечтают многие специалисты по теории чисел: при каких условиях эллиптическая кривая содержит хотя бы одну рациональную точку? Вопрос этот далеко не очевиден, даже для только что упомянутого частного случая эллиптической кривой. К примеру, 157 — число конгруэнтное, но гипотенуза простейшего прямоугольного треугольника с такой площадью равна



Прежде чем продолжить, мы позаимствуем у Леонардо его уловку — ту самую, что помогла перейти от 720 к 5, — и применим ее в самом общем виде. Умножив любое конгруэнтное число d на квадрат n² целого n, мы получим также конгруэнтное число. Чтобы убедиться в этом, достаточно взять любую рациональную пифагорову тройку, соответствующую треугольнику с площадью d, и умножить стороны на n. Площадь треугольника увеличится в n² раз. То же произойдет и при делении на n; площадь уменьшится в n² раз. Результат этого процесса будет целым только в том случае, если площадь делится нацело на квадрат целого числа (т. е. имеет квадратный делитель), так что при поиске конгруэнтных чисел достаточно работать только с числами, не имеющими такого делителя. Приведем первые несколько чисел, не имеющие квадратного делителя:

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное