Читаем Величайшие математические задачи полностью

Трудность здесь не в том, чтобы найти ответ. Кеплер нам все рассказал. Трудность в том, чтобы доказать, что он был прав. За прошедшие столетия ученые собрали немало косвенных тому свидетельств. Никто не смог предложить более плотную упаковку. Именно такое расположение атомов часто встречается в кристаллах, где, как считается, плотность оптимальна для минимизации затрат энергии — это стандартный принцип, по которому созданы многие природные формы. Этого оказалось достаточно, чтобы убедить большинство физиков. И никто не смог доказать, что ничего лучшего не существует. В более простых вопросах такого рода, вроде упаковки кругов на плоскости, обнаружились скрытые глубины. Надо сказать, весь этот раздел математики сложен и полон неожиданностей. Все это тревожило математиков, хотя большинство из них тоже считали, что Кеплер дал верный ответ. В 1958 г. Амброз Роджерс описал гипотезу Кеплера как то, «во что многие математики верят, а все физики знают и так». В этой главе рассказывается, как математики обратили веру в точное знание.

Чтобы понять, что именно они сделали, нам придется как следует приглядеться к кеплеровой конструкции из шариков, известной как гранецентрированная кубическая решетка. Стоит сделать это, и начинают проявляться тонкости стоявшей перед математиками задачи. Первым на ум приходит вопрос: почему мы используем слои с квадратной решеткой? В конце концов, самой плотной упаковкой на плоскости (т. е. для одного слоя) является треугольная решетка. Дело в том, что гранецентрированную кубическую решетку можно получить и из слоев с треугольной укладкой шариков; именно в этом суть замечания Кеплера о том, что «треугольная схема укладки не может существовать без квадратной». Однако гранецентрированную кубическую решетку, сложенную из квадратных слоев, проще описывать. Кроме того, так мы убедимся, что гипотеза Кеплера не столь прямолинейна, как укладка апельсинов в ящики.

Предположим, что мы начинаем с плоского слоя шариков, уложенных треугольниками (см. рис. 16 справа). Между шариками имеются скругленные треугольные выемки, в которые могут лечь шарики следующего слоя. Когда мы начинали с квадратного слоя, мы могли использовать все выемки без исключения, и положение второго и последующих слоев определялось однозначно. С треугольными слоями не так. Мы не можем использовать все выемки, поскольку они располагаются слишком близко друг к другу. Мы можем использовать только половину. Один из вариантов укладки показан на рис. 18 слева при помощи небольших серых точек для наглядности, а рис. 18 справа демонстрирует, как следует расположить следующий слой шариков. Другой способ уложить новый слой в выемки предыдущего показан на рис. 19 слева темными точками. Эти точки совпадают с выемками второго слоя, так что мы добавляем третий слой в соответствующем положении. Результат показан на рис. 19 справа.

Если мы работаем всего лишь с двумя слоями, разница между двумя вариантами не играет никакой роли. Мы можем без труда получить первый вариант укладки, просто повернув второй вариант на 60°. Эти варианты одинаковы «с точностью до симметрии». Но после укладки первых двух слоев у нас появляются два по-настоящему разных варианта для третьего слоя. Каждый новый слой имеет две системы выемок, показанных на рис. 19 слева светлыми и темными точками. В одной из них выемки соответствуют центрам шариков предыдущего слоя, которые на рис. 19 справа видны как светло— серые треугольнички. Во второй выемки соответствуют выемкам предпредыдущего слоя и видны на рис. 19 справа как треугольнички с вписанными в них крохотными белыми шестиугольничками. Чтобы получить гранецентрированную кубическую решетку, мы должны использовать для третьего слоя темно-серые позиции, а затем повторять такой порядок укладки до бесконечности.




Не до конца очевидно, однако, что результатом такой укладки станет гранецентрированная кубическая решетка. Где же здесь квадраты? Дело в том, что квадраты в такой укладке присутствуют, но располагаются наклонно, под углом. На рис. 20 показаны шесть последовательных треугольных слоев, из которых удалена часть шариков. Стрелками указаны ряды и столбцы скрытой внутри квадратной решетки. Все слои, параллельные данному, тоже выстроены по квадратной решетке, а между собой соотносятся в точности так же, как я выстраивал гранецентрированную кубическую решетку.

Насколько компактна такая упаковка? Мы измеряем компактность (эффективность) упаковки ее плотностью: долей общего объема, занимаемой шариками{20}. Чем больше плотность, тем компактнее упаковка. Кубики укладываются в параллелепипед с плотностью 1, заполняя весь объем. Между шариками, очевидно, в любом случае останутся промежутки, так что плотность их упаковки меньше единицы. Плотность гранецентрированной кубической решетки составляет в точности π/√18, это примерно 0,7405. При такой упаковке шарики заполняют чуть меньше трех четвертей пространства, и гипотеза Кеплера утверждает, что никакая упаковка шариков не может иметь плотность больше этой.



Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное