Читаем Величайшие математические задачи полностью

Кеплер не называл свое утверждение гипотезой: он просто высказал его в своей книге. Совершенно неясно, собирался ли он интерпретировать упомянутый факт столь всеобъемлющим образом. Имел ли он в виду, что гранецентрированная кубическая решетка представляет собой «самую плотную упаковку в трех измерениях» из всех представимых способов упаковки шариков? Или просто говорил о том, что это самая плотная упаковка из рассмотренных им лично? Невозможно вернуться в прошлое и спросить об этом. Но, как бы ни обстояло тогда дело, математиков и физиков интересует именно общая, самая смелая формулировка. Та, что требует рассмотреть все возможные способы упаковки бесконечного числа шариков в бесконечном пространстве и показать, что ни один из этих способов не может похвастать большей плотностью, чем гранецентрированная кубическая решетка.


Недооценить сложность гипотезы Кеплера очень легко. Вроде бы логично предположить, что самая плотная упаковка получится, если добавлять шарики по одному, так, чтобы каждый из них касался как можно большего числа соседних. Такой подход непременно даст структуру, о которой говорил Кеплер. То же получится, если вы будете добавлять шарики в правильном порядке и всегда, когда есть альтернативы, выбирать для них верную позицию. Однако нет никакой гарантии, что более дальновидная политика не окажется лучше, чем процесс поштучного добавления шариков. Всякий, кому приходилось укладывать вещи в багажник автомобиля, знает, что при укладке их по одной в багажнике могут остаться промежутки, куда ничего больше не лезет, но если начать сначала и подойти к вопросу более тщательно, то иногда удается втиснуть в то же пространство больше вещей. Конечно, отчасти проблема укладки вещей затрудняется тем, что все они имеют разные размеры и форму, но смысл аналогии достаточно понятен: максимально плотная упаковка на одном небольшом участке пространства может затруднить укладку остальных вещей и не привести к максимально плотной упаковке в большем объеме.

Конструкции, которые рассматривает Кеплер, очень специфичны. Можно предположить, что какой-то совершенно иной принцип позволит упаковать одинаковые шарики еще плотнее. Может быть, выпуклые слои были бы более эффективны. А может быть, «слои» — вообще неудачная идея. Но даже если вы абсолютно убеждены, что все сделано правильно, это все равно нужно доказывать.

Не убеждены? По-прежнему считаете, что здесь все очевидно? Настолько очевидно, что никакого доказательства не требуется? Сейчас я попытаюсь разрушить вашу уверенность в правильности интуитивного решения — на более простом примере, где речь идет об укладке одинаковых кружочков на плоскости. Предположим, я дам вам 49 одинаковых кружочков единичного диаметра. Каким будет размер самого маленького квадрата, способного их все вместить без перекрытия? На рис. 21 слева показан очевидный ответ: расположить их, как ставят молочные бутылки в ящике. Сторона квадрата при этом — ровно 7 единиц. Чтобы убедиться, что это наилучший вариант, обратите внимание на то, что каждый кружок жестко удерживается остальными, так что лишнее место взять неоткуда. Но рис. 21 справа показывает, что этот ответ неверен. Стоит упаковать кружочки вот таким немного нерегулярным образом, и они поместятся в квадрате со стороной чуть меньше 6,98. Так что доказательство тоже неверно. Жесткость упаковки не гарантирует, что невозможно сделать плотнее.



Несложно убедиться, что рассуждения, позволяющие получить ответ «семь», просто не могут быть верными. Для этого достаточно рассмотреть квадрат побольше. Квадратная решетка позволяет поместить n² кружков единичного диаметра в квадрат со стороной n. Невозможно повысить плотность такой укладки путем плавного перемещения кругов, ведь укладка-то у нас жесткая. Но для больших n должны существовать и более плотные укладки, потому что, как известно, треугольная решетка эффективнее квадратной. Если взять по-настоящему большой квадрат и упаковать в него как можно больше кругов, используя треугольную решетку, то, в конце концов, треугольная решетка, благодаря своим преимуществам, победит, несмотря на «краевые эффекты» по границе квадрата, где придется оставлять незаполненные промежутки. Периметр квадрата — 4n — невелик по сравнению с n². Треугольная решетка одерживает верх над квадратной как раз при n = 7. Это не очевидно, и доказывать это пришлось бы долго и подробно, но ясно, что рано или поздно размер сработает. Одной только жесткости укладки недостаточно.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное