Читаем Величайшие математические задачи полностью

Задача поиска наибольшей плотности укладки кругов или шариков при определенных условиях относится к классу математических задач, известных как задачи оптимизации. В такой задаче предлагается найти максимальное или минимальное значение некоторой функции (т. е. математического правила вычисления некой величины, которая определенным образом зависит от некоего набора переменных). Правило вычисления функции часто задается формулой, но это не обязательно. К примеру, таким образом можно сформулировать задачу с 49 кругами на плоскости. Переменными здесь будут координаты центров всех 49 кругов, а поскольку на каждый круг потребуется по две координаты, всего переменных получится 98. Сама функция — это размер наименьшего квадрата со сторонами, параллельными координатным осям, в который можно поместить данный набор неперекрывающихся кругов. Задача эквивалентна поиску минимального значения, которое принимает эта функция при значениях переменных, соответствующих всем вариантам решетки.



Функцию можно представить в виде многомерного ландшафта, каждая точка на котором соответствует определенному набору переменных, а высота в этой точке — значению функции. Максимум функции — это высота самого высокого ее пика, а минимум — глубина самой глубокой долины. В принципе задачи оптимизации можно решать методами дифференциального исчисления: в максимуме или минимуме функция должна быть горизонтальна (см. рис. 22), и дифференциальное исчисление позволяет отразить это условие в уравнении. Чтобы решить задачу укладки кругов в квадрат этим методом, нам пришлось бы решить систему из 98 уравнений с 98 переменными.

Решение задач оптимизации встречает на пути одно неожиданное препятствие: подобные уравнения часто имеют большое количество решений. Ландшафт может иметь множество локальных максимумов, из которых самый высокий лишь один. Представьте себе, к примеру, Гималаи: кроме пиков, там почти ничего и нет, но лишь Эвересту принадлежит рекорд высоты. Методы поиска пиков, самый очевидный из которых звучит как «иди вверх, пока это возможно», часто выводят на локальные максимумы и застревают на них. Еще одна трудность состоит в том, что с ростом числа переменных растет и вероятное число локальных пиков. Тем не менее иногда такой метод срабатывает. Даже частичные результаты могут оказаться полезными: если вам удалось найти локальный пик, ясно, что настоящий максимум не может быть ниже. Именно так была найдена улучшенная раскладка кругов в квадрате.

Для регулярных укладок функция, максимум которой нужно найти, зависит от конечного числа переменных — направлений и длин, вдоль которых решетка повторяется. Для нерегулярных укладок функция зависит от бесконечно большого числа переменных — центров всех кругов или шариков. В подобных случаях прямое использование дифференциального исчисления и других методик оптимизации ничего не даст. Доказательство Тота основано на хитрой идее переформулировать задачу о нерегулярной упаковке кругов и превратить ее в задачу оптимизации с конечным набором переменных. Позже, в 1953 г., он понял, что тот же трюк в принципе можно проделать и с гипотезой Кеплера. К несчастью, получившаяся функция зависит примерно от полутора сотен переменных — слишком много для ручного расчета. Но Тот прозорливо разглядел возможный выход: «Имея в виду стремительное развитие наших компьютеров, можно предположить, что минимум можно будет определить с высокой точностью».

В то время вычислительная техника только начинала развиваться, и достаточно мощной машины попросту не существовало, так что в последующие годы работа над гипотезой Кеплера шла в других направлениях. Ряд математиков занимался уточнением верхней границы для возможного значения плотности сферической упаковки. К примеру, в 1958 г. Роджерс доказал, что плотность не превосходит 0,7797. И никаких исключений: эта оценка относилась к любым способам укладки шариков. В 1986 г. Дж. Линдси понизил этот предел до 0,77844, а Дуглас Мадер в 1988 г. чуть-чуть улучшил оценку и получил 0,77836. Эти результаты показали, что невозможно получить плотность намного выше, чем 0,7405, характерные для гранецентрированной кубической решетки. Но тем не менее пробел в доказательстве сохранялся.

В 1990 г. американский математик Ву-И Хзянь объявил, что гипотеза Кеплера доказана. Подробности были опубликованы, но сразу появились сомнения. Тот, просмотрев статью в журнале Mathematical Reviews, написал: «Если бы спросили меня, [доказана ли тем самым гипотеза Кеплера] я бы ответил: нет. Надеюсь, что Хзянь дополнит свое сообщение, но мне кажется, что значительная часть работы еще впереди».

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное