Задача поиска наибольшей плотности укладки кругов или шариков при определенных условиях относится к классу математических задач, известных как задачи оптимизации. В такой задаче предлагается найти максимальное или минимальное значение некоторой функции (т. е. математического правила вычисления некой величины, которая определенным образом зависит от некоего набора переменных). Правило вычисления функции часто задается формулой, но это не обязательно. К примеру, таким образом можно сформулировать задачу с 49 кругами на плоскости. Переменными здесь будут координаты центров всех 49 кругов, а поскольку на каждый круг потребуется по две координаты, всего переменных получится 98. Сама функция — это размер наименьшего квадрата со сторонами, параллельными координатным осям, в который можно поместить данный набор неперекрывающихся кругов. Задача эквивалентна поиску минимального значения, которое принимает эта функция при значениях переменных, соответствующих всем вариантам решетки.
Функцию можно представить в виде многомерного ландшафта, каждая точка на котором соответствует определенному набору переменных, а высота в этой точке — значению функции. Максимум функции — это высота самого высокого ее пика, а минимум — глубина самой глубокой долины. В принципе задачи оптимизации можно решать методами дифференциального исчисления: в максимуме или минимуме функция должна быть горизонтальна (см. рис. 22), и дифференциальное исчисление позволяет отразить это условие в уравнении. Чтобы решить задачу укладки кругов в квадрат этим методом, нам пришлось бы решить систему из 98 уравнений с 98 переменными.
Решение задач оптимизации встречает на пути одно неожиданное препятствие: подобные уравнения часто имеют большое количество решений. Ландшафт может иметь множество локальных максимумов, из которых самый высокий лишь один. Представьте себе, к примеру, Гималаи: кроме пиков, там почти ничего и нет, но лишь Эвересту принадлежит рекорд высоты. Методы поиска пиков, самый очевидный из которых звучит как «иди вверх, пока это возможно», часто выводят на локальные максимумы и застревают на них. Еще одна трудность состоит в том, что с ростом числа переменных растет и вероятное число локальных пиков. Тем не менее иногда такой метод срабатывает. Даже частичные результаты могут оказаться полезными: если вам удалось найти локальный пик, ясно, что настоящий максимум не может быть ниже. Именно так была найдена улучшенная раскладка кругов в квадрате.
Для регулярных укладок функция, максимум которой нужно найти, зависит от конечного числа переменных — направлений и длин, вдоль которых решетка повторяется. Для нерегулярных укладок функция зависит от бесконечно большого числа переменных — центров всех кругов или шариков. В подобных случаях прямое использование дифференциального исчисления и других методик оптимизации ничего не даст. Доказательство Тота основано на хитрой идее переформулировать задачу о нерегулярной упаковке кругов и превратить ее в задачу оптимизации с
В то время вычислительная техника только начинала развиваться, и достаточно мощной машины попросту не существовало, так что в последующие годы работа над гипотезой Кеплера шла в других направлениях. Ряд математиков занимался уточнением верхней границы для возможного значения плотности сферической упаковки. К примеру, в 1958 г. Роджерс доказал, что плотность не превосходит 0,7797. И никаких исключений: эта оценка относилась к любым способам укладки шариков. В 1986 г. Дж. Линдси понизил этот предел до 0,77844, а Дуглас Мадер в 1988 г. чуть-чуть улучшил оценку и получил 0,77836. Эти результаты показали, что невозможно получить плотность
В 1990 г. американский математик Ву-И Хзянь объявил, что гипотеза Кеплера доказана. Подробности были опубликованы, но сразу появились сомнения. Тот, просмотрев статью в журнале