Математики без колебаний приняли критику Веблена, но недавно Хейлс еще раз проанализировал доказательство Жордана и не нашел в нем «ничего, на что можно было бы возразить». Более того, замечание Веблена о многоугольнике звучит странно: теорема для него достаточно прозрачна, да и доказательство Жордана вовсе не опирается на этот частный случай{22}
. У доказательств-рассказов есть собственные проблемы. С ними надо держать ухо востро и проверять, совпадает ли популярная версия рассказа с его оригинальным вариантом.В процессе работы над гипотезой Кеплера Хейлс получил в 2007 г. формальное, проверенное компьютером доказательство теоремы Жордана, на что потребовалось 60 000 строк компьютерного кода. Вскоре после этого группа математиков, воспользовавшись другим программным обеспечением, получила другое формальное доказательство. Компьютерная проверка не застрахована от ошибок на 100 %, но то же можно сказать и о традиционных доказательствах. Более того, многие математические научные труды, вероятно, содержат технические ошибки. Время от времени такие ошибки обнаруживаются и в большинстве случаев оказываются безвредными. Серьезные ошибки, как правило, замечают раньше, чем они приводят к нарушениям и делают что-то явно бессмысленным. Это еще один недостаток доказательства-рассказа — плата за то, что доказательство делается понятным человеку: иногда нестрогая логика выглядит на первый взгляд очень убедительно.
Хейлс называет свой подход
6. Новые решения старой задачи. Гипотеза Морделла
Настало время нам вновь окунуться в теорию чисел и двинуться по направлению к Великой теореме Ферма. Чтобы подготовить почву, я начну с менее известной, но, по мнению некоторых, еще более важной задачи. В 2002 г. Эндрю Гранвиль и Томас Такер представили ее следующим образом:
«В 1922 г. Морделл написал одну из величайших статей в истории математики… В самом конце статьи он задал пять вопросов, которые сыграли важную роль в мотивировании значительной части исследований XX в. в области диофантовой арифметики. Ответ на самый важный и сложный из этих вопросов дал Фальтингс в 1983 г., выдвинув для этого идеи, которые можно назвать одними из наиболее глубоких и мощных в истории математики».
Упомянутый здесь Луис Морделл — британский специалист по теории чисел, родившийся в США в еврейской семье литовского происхождения, а Герд Фальтингс — немецкий математик. Вопрос, о котором идет речь, приобрел известность как гипотеза Морделла. В цитате, помимо прочего, обозначен ее точный статус: блестяще доказана Фальтингсом.