Читаем Величайшие математические задачи полностью

Гипотеза Морделла относится к крупному отделу теории чисел — к диофантовым уравнениям. Они названы так в честь Диофанта Александрийского, написавшего где-то около 250 г. н. э. знаменитую книгу «Арифметика». Считается, что первоначально она включала в себя 13 книг, но до нас дошли лишь шесть, и все в позднейших копиях. Это не был арифметический текст в буквальном смысле, т. е. речь в нем не шла о сложении и умножении. По существу, это был первый текст по алгебре, в котором были собраны почти все познания греков о том, как нужно решать уравнения. В нем использовалась даже некая рудиментарная форма алгебраического языка: судя по всему, для обозначения неизвестного в ней использовался вариант ς греческой буквы «сигма» (мы для этого используем x), для квадрата неизвестного (вместо нашего x2) — ΔΥ, а для куба неизвестного (вместо нашего x3) — ΚΥ. Сложение обозначалось тем, что символы помещались рядом друг с другом, а вычитание имело собственный символ. Величина, обратная неизвестному (наше 1/x), выглядела как ςχ и т. д. Эти обозначения восстановлены на основании позднейших копий и переводов и могут быть не вполне точными. Классическая греческая математика требовала, чтобы решения уравнений были рациональными числами, т. е. дробями вроде 22/7, сформированными из целых чисел. Часто требовалось даже, чтобы они сами были целыми числами. Все задействованные числа были положительными: представление об отрицательных числах появилось несколькими столетиями позже в Китае и Индии. Сегодня мы называем подобные задачи диофантовыми уравнениями. В «Арифметике» можно обнаружить замечательно глубокие результаты. В частности, Диофант, судя по всему, знал, что любое целое число может быть представлено в виде суммы четырех полных квадратов целых чисел (включая нуль). Лагранж впервые доказал это в 1770 г. Но нас в данном случае интересует другой результат — формула для пифагоровых троек, в которых сумма двух полных квадратов дает третий полный квадрат. Название происходит от теоремы Пифагора: именно таким соотношением связаны стороны прямоугольного треугольника. Самый известный пример — знаменитый треугольник 3, 4, 5: (3² + 4² = 5²). Еще один пример — треугольник 5, 12, 13: (5² + 12² = 13²). Рецепт поиска пифагоровых троек сформулирован в виде двух лемм (вспомогательных утверждений), помещенных перед Предложениями 29 и 30 в Книге X «Начал» Евклида.

Приведенная у Евклида процедура позволяет получить бесконечно много пифагоровых троек. Морделл знал несколько других диофантовых уравнений, для которых существует формула с бесконечным числом решений. Он знал также, что существует другой тип диофантовых уравнений, имеющих бесконечно много решений, которые не описываются формулой. Существуют так называемые эллиптические кривые — достаточно глупое название, поскольку они не имеют практически никакого отношения к эллипсам, — где бесконечность числа решений возникает потому, что любые два решения можно скомбинировать так, чтобы получилось еще одно. Сам Морделл доказал одно из фундаментальных свойств таких уравнений: все бесконечное множество решений может быть получено при помощи этого процесса из конечного их числа.

Помимо этих двух известных типов уравнений, все остальные диофантовы уравнения, которые мог придумать Морделл, попадали в одну из двух категорий. Либо про уравнение было известно, что число его решений конечно (или их просто нет), либо никто не мог сказать наверняка, является ли число его решений конечным или бесконечным. В сущности, ничего нового в этом не было, но Морделлу показалось, что он видит в этом закономерность, которую до него никто не замечал. Закономерность эта относилась вовсе не к теории чисел — скорее, ее можно было отнести к топологии. Чтобы разобраться в этом, необходимо было рассматривать решения уравнений в комплексных числах, а не в рациональных или целых. А это, что ни говори, противоречило самому духу диофантовых уравнений.


Здесь стоит добавить несколько деталей, которые пригодятся нам позже. Не бойтесь формул: они нужны мне в основном для того, чтобы можно было ссылаться на что-то конкретное. Сосредоточьтесь на рассказе, который лежит за ними.

x² + y² = z².

Разделив обе части уравнения на z², получим

(x/z)² + (y/z)² = 1.

Согласно главе 3, это означает, что пара рациональных чисел (x/z, y/z) лежит на единичной окружности в плоскости. Далее пифагорово уравнение берет начало в геометрии и имеет геометрическую интерпретацию: связанный с ним треугольник является прямоугольным. Формула, которую я только что вывел, позволяет дать чуть другую геометрическую интерпретацию, причем не одной, а всех пифагоровых троек. Решения пифагорова уравнения непосредственно соответствуют всем рациональным точкам единичной окружности. Мы считаем точку рациональной, если рациональны обе ее координаты.

Из этого можно сделать немало интересных выводов. Если привлечь тригонометрию (но можно обойтись и одной алгеброй), обнаружится, что для любого числа t точка



Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное