Читаем Величайшие математические задачи полностью

лежит на единичной окружности. Более того, если t рационально, то рациональна и эта точка. Все рациональные точки возникают подобным образом, так что мы получили исчерпывающую формулу для всех решений пифагорова уравнения. Она эквивалентна евклидовой формуле, которая, в свою очередь, совпадает с диофантовой. К примеру, если t = 22/7, формула даст результат



Можно проверить: 308² + 435² = 533². Для нас точная формула не слишком важна, важно, что она существует.

Это не единственное диофантово уравнение, для всех решений которого существует единая формула, но таких уравнений относительно немного. Например уравнения Пелля, такие как x² = 2y² + 1. У этого уравнения бесконечно много решений (3² = 2 × 2² + 1, 17² = 2 × 12² + 1) и для них существует общая формула. Однако упорядоченность пифагоровых троек этим не ограничивается; геометрия подсказывает нам и другие закономерности. Предположим, мы имеем две пифагоровы тройки. Следственно, существует два соответствующих им решения пифагорова уравнения — две рациональные точки на окружности. Геометрия предлагает естественный способ «сложить» эти точки. Начнем с точки (1, 0), в которой окружность пересекает горизонтальную ось, и найдем углы между этой точкой и двумя точками-решениями. Сложим эти два угла (см. рис. 25) и посмотрим, что получится. Точка, разумеется, тоже лежит на окружности, и короткий расчет покажет, что она также рациональна. Таким образом, имея два любых решения, мы можем получить третье. Математики уже заметили множество подобных фактов, причем большинство из них обретает смысл сразу же, как только мы вспоминаем о рациональных точках на окружности.

«Короткий расчет», который я небрежно пропустил, делается с использованием тригонометрии. Классические тригонометрические функции, такие как синус и косинус, теснейшим образом связаны с геометрией окружности. В расчете, на который я ссылался, используются стандартные, довольно элегантные формулы вычисления синуса и косинуса суммы двух углов через синусы и косинусы самих углов. Существует много способов получения синусов и косинусов, и один из них, достаточно изящный, основан на интегральном исчислении. Если вы будете интегрировать алгебраическую функцию 1/√1-x², то результат может быть выражен, используя функцию синус. Точнее, нам нужна функция, обратная синусу: угол, синус которого равен интересующему нас числу{23}.



Интеграл возникает, когда мы пытаемся вывести формулу длины дуги окружности методами математического анализа, а геометрия окружности дает простое, но очень важное следствие для этого результата. Длина единичной окружности равна 2π, поэтому пройдя расстояние 2π вдоль окружности, вы окажетесь в точности на том же месте. То же можно сказать о любом расстоянии, кратном 2π: по стандартному математическому соглашению положительные целые числа соответствуют направлению против часовой стрелки, а отрицательные — по часовой стрелке. Следовательно, синус и косинус числа остаются неизменными при добавлении к аргументу величины 2π, взятой целое число раз. Мы говорим, что эти функции периодические с периодом 2π.


Аналитики XVIII и XIX вв. обобщили эту интегральную формулу и нашли целую группу интересных новых функций, аналогичных знакомым тригонометрическим. Эти новые функции выглядели загадочно; они были периодическими, как синус и косинус, но хитроумно периодическими. Вместо одного периода, к примеру 2π (или кратных ему), они имели два независимых периода. Если вы попытаетесь проделать такое с действительными функциями, то получите всего лишь константы, но для комплексных чисел здесь открываются широкие возможности.

Начало исследованиям в этой области положили итальянский математик Джулио ди Фаньяно и плодовитый Эйлер. Фаньяно пытался при помощи интегрального исчисления найти длину дуги эллипса, но не сумел вывести формулу в явном виде. Сегодня это уже не удивительно, ведь мы знаем, что такой формулы не существует. Однако он заметил, что длины различных особых дуг эллипса находятся между собой в определенных отношениях. Результаты своих исследований Фаньяно опубликовал в 1750 г. Эйлер в аналогичной ситуации заметил те же отношения и представил их в виде формального отношения интегралов. Они похожи на интеграл, связанный с функцией синуса, но квадратичное выражение под знаком квадратного корня сменяется кубическим многочленом или многочленом четвертой степени, к примеру, таким: (1 − x²) (1 − 4x²).

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное