лежит на единичной окружности. Более того, если
Можно проверить: 308² + 435² = 533². Для нас точная формула не слишком важна, важно, что она существует.
Это не единственное диофантово уравнение, для всех решений которого существует единая формула, но таких уравнений относительно немного. Например уравнения Пелля, такие как
«Короткий расчет», который я небрежно пропустил, делается с использованием тригонометрии. Классические тригонометрические функции, такие как синус и косинус, теснейшим образом связаны с геометрией окружности. В расчете, на который я ссылался, используются стандартные, довольно элегантные формулы вычисления синуса и косинуса суммы двух углов через синусы и косинусы самих углов. Существует много способов получения синусов и косинусов, и один из них, достаточно изящный, основан на интегральном исчислении. Если вы будете интегрировать алгебраическую функцию 1/√1-
Интеграл возникает, когда мы пытаемся вывести формулу длины дуги окружности методами математического анализа, а геометрия окружности дает простое, но очень важное следствие для этого результата. Длина единичной окружности равна 2π, поэтому пройдя расстояние 2π вдоль окружности, вы окажетесь в точности на том же месте. То же можно сказать о любом расстоянии, кратном 2π: по стандартному математическому соглашению положительные целые числа соответствуют направлению против часовой стрелки, а отрицательные — по часовой стрелке. Следовательно, синус и косинус числа остаются неизменными при добавлении к аргументу величины 2π, взятой целое число раз. Мы говорим, что эти функции периодические с периодом 2π.
Аналитики XVIII и XIX вв. обобщили эту интегральную формулу и нашли целую группу интересных новых функций, аналогичных знакомым тригонометрическим. Эти новые функции выглядели загадочно; они были периодическими, как синус и косинус, но хитроумно периодическими. Вместо одного периода, к примеру 2π (или кратных ему), они имели два независимых периода. Если вы попытаетесь проделать такое с действительными функциями, то получите всего лишь константы, но для комплексных чисел здесь открываются широкие возможности.
Начало исследованиям в этой области положили итальянский математик Джулио ди Фаньяно и плодовитый Эйлер. Фаньяно пытался при помощи интегрального исчисления найти длину дуги эллипса, но не сумел вывести формулу в явном виде. Сегодня это уже не удивительно, ведь мы знаем, что такой формулы не существует. Однако он заметил, что длины различных особых дуг эллипса находятся между собой в определенных отношениях. Результаты своих исследований Фаньяно опубликовал в 1750 г. Эйлер в аналогичной ситуации заметил те же отношения и представил их в виде формального отношения интегралов. Они похожи на интеграл, связанный с функцией синуса, но квадратичное выражение под знаком квадратного корня сменяется кубическим многочленом или многочленом четвертой степени, к примеру, таким: (1 −