Для «определения параллельности» внутренними средствами, как выясняется, недостаточно самих по себе двух точек, в которых мы желаем определить параллельные направления: нужно еще выбрать какую-то линию, их соединяющую, как показано на рис. 6.10. Математическое знание под названием
Рис. 6.10.
Параллельный перенос вектора, заданного в точке A, вдоль кривой. Кривая проведена на двумерной искривленной поверхности. Задача параллельного переноса – в любой точке кривой указать векторы, которые считаются параллельными исходно выбранному векторуТолпе локальных наблюдателей, оказывается, по силам определить процедуру параллельного переноса вдоль кривой в пространстве-времени, используя конструкцию, которая называется лестницей Шильда[105]
. Это система «параллелограммов», точнее, того, что заменяет параллелограммы в мире, где вместо прямых линий – геодезические. Для простоты мы ограничимся такими кривыми в пространстве-времени, которые в принципе могут описывать движение какого-нибудь тела – под действием чего угодно, но все-таки с досветовыми скоростями. На рис. 6.11 слева изображена такая кривая, а из точки A0 на ней торчит стрелка: она определяет направление, которое и нужно перенести вдоль кривой. Идея в том, чтобы построить «параллелограмм», одна сторона которого – заданная стрелка, а другая – направление на некоторую «следующую» точку на кривой; тогда сторона, противоположная заданной стрелке, и окажется ее параллельным переносом в ту другую точку. Строить «параллелограмм» предлагается по двум диагоналям, пользуясь тем, что (как и в настоящем параллелограмме) точка их пересечения делит каждую из них пополам. Ключевое же обстоятельство состоит в том, что линии, используемые во всех построениях, включая и диагонали, – отрезки геодезических! Это означает, что локальные наблюдатели проводят их, отправляя тела в свободное падение[106]. Получающееся отсюда правило параллельного переноса в результате «знает» о том, как происходит свободное падение. Поэтому и искривленное пространство-время, по существу определяемое параллельным переносом, оказывается пригодным для описания гравитации, служащей причиной этого вида движения, – чего мы, собственно говоря, от искривленного пространства-времени и хотели.Рис. 6.11.
Построение лестницы Шильда для параллельного переноса какого-то направления вдоль произвольной кривой. Наблюдатели создают «параллелограммы» из отрезков геодезическихПостроение «параллелограммов» из коротких отрезков геодезических называется
Рис. 6.12.
Левая стрелка – касательный вектор к кривой. Если его перенести параллельно в какую-то другую точку кривой, то даже в плоском пространстве (где параллельный перенос происходит по правилу параллелограмма) он перестает быть касательным к кривой