Читаем Введение в общую теорию языковых моделей полностью

Спросим себя: как это возможно, чтобы точка на прямой входила в какой-нибудь интервал этой прямой? Это возможно только потому, что в данном интервале есть и еще какая-нибудь, хотя бы одна, точка. Ведь, если этой другой точки нет, тогда наш интервал только и будет состоять из одной первично данной точки, т.е. вовсе не будет интервалом. Теперь зададим себе другой вопрос: как возможно, чтобы на каком-нибудь интервале прямой было две точки? Это возможно только потому, что эти две точки отличаются друг от друга, т.к. иначе было бы не две точки, а опять-таки только одна. Зададим также и третий вопрос: что нужно для того, чтобы две точки на прямой отличались между собою? Для этого необходимо, чтобы между данными двумя точками было какое-нибудь расстояние, т.е., чтобы между этими двумя точками можно было бы поместить еще и третью точку. Очевидно, что тот же самый вопрос нужно поставить и о трех точках, о четырех, о пяти точках и т.д. Другими словами, если имеется на данном интервале одна точка, то это возможно только потому, что на данном интервале возможна и целая бесконечность точек. Вот что значило невинное, и с первого взгляда, банальное утверждение, что окрестность точки – есть тот интервал прямой, в котором данная точка помещается. Уже маленькое напряжение мысли приводит здесь к понятию бесконечности точек, из которых состоит окрестность; а математико-лингвисты только и взяли исходный математический тезис о нахождении точки в интервале и тем самым превратили его в очевиднейшую и вполне бесплодную банальность.

Но попробуем еще минуту задуматься над положением точки в интервале – окрестности, как тут же вытекает и еще один очень важный вывод: как бы две точки на данном интервале ни были близки одна к другой, они могут быть еще ближе того. А это значит, что все точки данного интервала прямой мы рассматриваем, как переменные, как всегда подвижные, как всегда стремящиеся к другим точкам, которые являются для них пределом и которые они никогда достигнуть не могут. Какая-нибудь переменная точка бесконечно приближается к постоянной или последовательность положений данной точки имеет другую точку своим пределом, если с момента определенной близости переменной точки к постоянной, переменная всегда остается в окрестности постоянной точки. Следовательно, окрестностью данной точки на прямой является целая бесконечность точек этого интервала, как угодно к ней близких. Вот в этом-то и заключается все дело, в этой как угодно большой, взаимной близости точек. И подобного рода тезис в скрытой форме уже содержался в первоначальном тезисе, который, как мы уже сказали выше, никак нельзя брать в метафизической изоляции и тем самым превращать его в ненужную банальность.

Можно оказать и иначе. Если мы имеем какое-нибудь бесконечное множество, то предельной точкой этого бесконечного множества является такая точка, в окрестности которой содержится другая, хотя бы одна, отличная от нее точка, входящая в данное бесконечное множество. Таким образом, окрестность данной точки состоит из бесконечного числа бесконечно малых приращений данной величины, данной функции и вообще стремление каждой точки к своему пределу. Понятие окрестности обеспечивает для данной величины возможность бесконечно малых приращений, когда она стремится к своему пределу.

Мы не будем здесь давать определение предела. Оно очень просто, и для ознакомления с ним достаточно самого краткого руководства по математическому анализу. Его можно дать более точно и более подробно, его можно дать и в самой общей форме. Если мы скажем, что пределом данной числовой последовательности является такое число, расстояние которого от любого числа последовательностей, как бы оно велико ни было, может стать меньше любой заданной величины, то подобного определения для нас сейчас вполне достаточно. Всякие уточнения читатель легко найдет уже в элементарных руководствах по математике. И приводить их нам в данном очерке являлось бы излишней роскошью, которая только отвлекла бы внимание читателя от нашей основной проблемы.

<p>4. Значение математического понятия окрестности для лингвистики</p>
Перейти на страницу:

Похожие книги