Наблюдаемая в окружающем нас мире самоорганизация систем, а также подобие друг на друга происходящих в Природе различных явлений дали учёным основание распространить концепцию самоорганизации на Вселенную в целом. Но в таком случае, как и откуда Вселенная получает энергию и информацию для своей самоорганизации? Возникшая путём Большого взрыва, она является закрытой системой. Согласно Второму началу термодинамики, все закрытые системы эволюционируют в одном направлении – к тепловому равновесию, сопровождаемому увеличением энтропии. Самопроизвольное образование галактик во Вселенной могло произойти только вопреки Второму началу.
Достоверно установлено – эволюция галактик, не останавливаясь, идёт миллиарды лет: они набирают массу, меняют размер и плотность, старые звёзды умирают, зажигаются новые.
Модельные вычисления указывают на направленность эволюционного процесса формирования галактик. Согласно модельным вычислениям, уже через сотню миллионов лет после Большого взрыва в космосе образовались облака из тёмной материи величиной с нынешнюю Солнечную систему. Они объединялись во всё более и более крупные структуры, независимо от расширения пространства. Это привело к возникновению скопления облаков тёмной материи, а потом и скопления этих скоплений. Они втягивали в себя космический газ, предоставляя ему возможность сгущаться и коллапсировать. Так образовались первые сверхмассивные звёзды; они быстро взрывались сверхновыми, оставляя после себя чёрные дыры. Эти взрывы обогащали космическое пространство элементами тяжелее гелия, которые способствовали охлаждению коллапсирующих газовых облаков и потому делали возможным появление менее массивных звёзд второго поколения. Такие звёзды уже могли существовать миллиарды лет и могли формировать (опять-таки с помощью тёмной материи) гравитационно связанные системы. Так возникли долгоживущие галактики, в том числе и наша[128]
.Из компьютерной модели следует, что основополагающую роль в формировании галактик играла недоступная наблюдениям тёмная материя, о составе и происхождении которой современная наука ничего не знает.
Гипотетически предположив существование множества реальных параллельных миров, учёные пришли к идее Мультивселенной, в которой наша Вселенная не единственное место, где возникла жизнь. Идея Мультивселенной активно используется в теории струн и теории инфляционной Вселенной.
Согласно одной из гипотез, нашу Вселенную следует рассматривать как одну из небольших областей, образованных в результате фазовых переходов на начальных этапах эволюции. Имеются и другие варианты образования «параллельных вселенных», например, многомировая интерпретация квантовой механики, где каждой волновой функции сопоставляется своя умозрительная вселенная. Идея множественных вселенных с бесчисленным разнообразием миров и законов присутствует и в антропном принципе.
По убеждению многих физиков, Мультивселенная не более как плод фантазии. Это скорее философская проблема, не имеющая непосредственного отношения к теоретической физике.
Следует также иметь в виду, что присутствие бесконечностей в теориях часто приводит к несуразностям. Допуская существование параллельных миров, в соответствии с теорией Хартла – Хокинга законы физики в них должны быть такими же, как в нашей Вселенной. И если число вселенных ничем не ограничено, наша Вселенная будет обязательно где-то точно воспроизведена вместе с нами. К тому же не один раз.
Структура наблюдаемой части нашей Вселенной крайне неустойчива к численным значениям фундаментальных постоянных. Изменение размерности пространства приводит к непредвиденным изменениям физических законов. При размерности пространства
Десятилетиями учёные безрезультатно ищут объяснение, почему полученные экспериментальным путём фундаментальные константы имеют именно такие значения, которые имеют. Ни одна из существующих теорий не в состоянии предложить вариант, позволяющий теоретическим путём получить количество и численные значения этих констант. Многочисленные наблюдения и экспериментальные данные показали, что при организации материального мира и создании вещества Природа использовала ограниченный набор принципов и физических констант. Тонкий подбор значений констант и различных типов взаимодействий привёл Вселенную в идеальное, но вместе с тем хрупкое равновесие, которое едва ли могло быть достигнуто случайным образом.