Читаем Занимательная арифметика [Загадки и диковинки в мире чисел] полностью

На этом свойстве числа 365 основана задача С. А. Рачинского, изображенная на известной картине "Трудная задача" Богданова-Бельского:

(102 + 112 + 122 + 132+ 142)/365

Таких чисел не много наберется в нашей галерее арифметических диковинок.


ТРИ ДЕВЯТКИ


В следующей витрине выставлено наибольшее из всех трехзначных чисел: 999.

Любопытная особенность числа 999 проявляется при умножении на него всякого другого трехзначного числа. Получается шестизначное произведение; первые три цифры его есть умножаемое число, уменьшенное на единицу, а остальные три цифры — "дополнения" первых до 9. Например:



Стоит лишь взглянуть на следующую строку, чтобы понять происхождение этой особенности:



Зная эту особенность, мы можем "мгновенно" умножать любое трехзначное число на 999.

947 х 999 = 946 053,

509 х 999 = 508 491,

981 х 999 = 980 019 и т. д.

А так как 999 = 9 х 111 = 3 х 3 х 3 х 37, то вы можете, опять-таки с молниеносной быстротой, писать целые колонны шестизначных чисел, кратных 37; незнакомый со свойствами числа 999, конечно, сделать этого не в состоянии. Короче говоря, вы можете устраивать перед непосвященными маленькие сеансы "мгновенного умножения и деления".


ЧИСЛО ШЕХЕРАЗАДЫ


Следующее на очереди у нас число 1001 —прославленное число Шехеразады. Вы, вероятно, и не подозревали, что в самом названии сборника волшебных арабских сказок заключается также своего рода чудо, которое могло бы поразить воображение сказочного султана не менее многих других чудес Востока, если бы он способен был интересоваться арифметическими диковинками.

Чем же замечательно число 1001? С виду оно кажется весьма обыкновенным. Оно даже не принадлежит к избранному разряду так называемых "простых" чисел. Оно делится без остатка и на 7, и на 11, и на 13 — на Три последовательных простых числа, произведением которых оно и является. Но не в том диковинка, что число 1001 = 7 х 11 х 13,—здесь нет еще ничего волшебного. Замечательнее то, что при умножении на него трехзначного числа получается результат, состоящий из самого умноженного числа, только написанного дважды, например:

873 х 1001 = 873 873,

207 х 1001 = 207 207 и т. д.

И хотя этого и следовало ожидать, так как 873 X 1001 = 873 х 1000 + 873 = 873 000 + 873, — все же, пользуясь указанным свойством "числа Шехеразады", можно достичь результатов совсем неожиданных, кажущихся волшебными, — по крайней мере, человеку неподготовленному.

Сейчас поясним, в чем дело.

Товарищей, не посвященных в арифметические тайны, вы можете поразить следующим фокусом. Пусть кто-нибудь напишет на бумажке секретно от вас трехзначное число, какое хочет, и затем пусть припишет к нему еще раз то же самое число. Получится шестизначное число. Предложите тому же товарищу или его соседу разделить, секретно от вас, это число на 7; при этом вы заранее предсказываете, что остатка не получится. Результат передается новому соседу, который по вашему предложению делит его на 11; и хотя вы не знаете делимого, вы все же смело утверждаете, что и оно разделится без остатка. Полученный результат вы направляете следующему соседу, которого просите разделить это число на 13,— деление снова выполняется без остатка, о чем вы заранее предупреждаете. Результат третьего деления вы, не глядя на полученное число, вручаете первому товарищу со словами:

— Вот число, которое ты задумал!

— Так и есть: ты угадал.

Какова разгадка фокуса?

Этот красивый арифметический фокус, производящий на непосвященных впечатление волшебства, объясняется очень просто: вспомните, что приписать к трехзначному числу его само — значит умножить его на 1001, то-есть на произведение 7 х 11 х 13. Шестизначное число, которое ваш товарищ получит после того, как припишет к задуманному числу его само, должно будет поэтому делиться без остатка и на 7, и на 11, и на 13; а в результате деления последовательно на эти три числа (то-есть на их произведение — 1001) оно должно, конечно, снова дать задуманное число.


ЧИСЛО 10101


После сказанного о числе 1001 уже не будет неожиданностью увидеть в витринах нашей галереи число 10101. Вы догадаетесь, какому именно свойству обязано это число такою честью. Оно, как и число 1001, дает удивительный результат при умножении, но не трехзначных чисел, а двузначных; каждое двузначное число, умноженное на 10101, дает в результате само себя, написанное трижды. Например:

73 х 10 101 = 737 373,

21 х 10 101 = 212 121.

Причина уясняется из следующей строки:



Можно ли проделывать с помощью этого числа фокусы необычайного отгадывания, как с помощью числа 1001?

Да, можно. Здесь возможно даже обставить фокус разнообразнее, если иметь в виду, что 10 101 есть произведение четырех простых чисел:

10 101 = 3 х 7 х 13 х 37.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука