Ключ к доказательству Лежандра — элегантная формула из сферической геометрии, которая выражает площадь треугольника на поверхности сферы через три его внутренних угла. На сфере треугольники и другие многоугольные фигуры образованы не прямыми линиями, а дугами больших окружностей.
На практике для нахождения больших окружностей на малой сфере можно использовать ленту (рис. 10.2). Возьмите ленту, например такую, которой перевязывают подарочные коробки, и положите ее на сферу. Оберните ленту вокруг сферы, так чтобы она лежала плоско и не морщила по бокам. Тогда лента покажет, где находится большая окружность.
Рис. 10.2. Чтобы найти большую окружность, нужно обмотать сферу лентой
Определим сферический треугольник как область, ограниченную тремя большими окружностями (см. рис. 10.3). Математики называют большую окружность геодезической, поэтому точнее было бы называть сферический треугольник
Рис. 10.3. Треугольник, образованный тремя большими окружностями
Геодезические треугольники впервые были введены греческим математиком Менелаем Александрийским (ок. 98 года) в книге «Sphaerica» (Сферика). В ней Менелай построил теорию сферической геометрии по аналогии с евклидовой теорией геометрии на плоскости, изложенной в «Началах». Он показал, что многие теоремы, справедливые для плоских треугольников, верны и для геодезических треугольников. Например, сумма длин двух сторон сферического треугольника больше длины третьей стороны. Он также доказал интересный результат, имеющий место на сфере, но не на плоскости: два подобных геодезических треугольника (т. е. с соответственно равными углами) обязательно конгруэнтны. С другой стороны, одна из самых известных теорем геометрии на плоскости — сумма внутренних углов треугольника равна 180°, или π, — для сферы неверна[6]
. На сфере сумма внутренних углов всегда больше π. Например, большой геодезический треугольник на рис. 10.4 имеет три прямых угла, их сумма равна 3π/2. В меньших геодезических треугольниках кривизна сферы сказывается не так сильно, поэтому сумма углов меньше, но все равно превышает π.Почти полторы тысячи лет никто не пытался уточнить утверждение Менелая о сумме внутренних углов. И лишь в XVII веке сразу два человека, Томас Хэрриот (ок. 1560–1621) и Альбер Жирар (1595–1632), количественно выразили сферический избыток суммы углов.
На рис. 10.4 мы видим, что существует прямая связь между площадью треугольника и суммой внутренних углов. Чем больше размер треугольника, тем сильнее искажение вследствие кривизны, поэтому сумма углов возрастает.
Рис. 10.4. Геодезические треугольники на сфере
Теорема Хэрриота и Жирара дает формулу, связывающую три величины: сумму внутренних углов геодезического треугольника, площадь треугольника и радиус содержащей его сферы. Для простоты мы приведем формулу для треугольников на
Поскольку сумма внутренних углов плоского треугольника равна π, мы можем записать эту формулу по-другому:
площадь = (сумма углов) — (сумма углов плоского треугольника).
Таким образом, площадь сферического треугольника — это как раз та величина, на которую сумма его углов превышает сумму углов плоского треугольника. Как мы увидим, эта примечательная формула обобщается на сферические многоугольники с числом сторон больше трех. Кстати, это первый конкретный пример, показывающий, почему углы удобнее измерять в радианах; формула перестает быть верной, если углы измерены в градусах.