Читаем Жемчужина Эйлера полностью

Для разогрева убедимся, что эта теорема верна для большого геодезического треугольника на рис. 10.4 (в предположении, что сфера единичная). Мы можем покрыть всю сферу восемью такими треугольниками — четыре в северной полусфере и четыре в южной. Поэтому площадь треугольника равна одной восьмой площади сферы. Поскольку площадь сферы радиуса r равна 4πr2, то площадь единичной сферы (г = 1) равна 4π. Следовательно, площадь треугольника равна одной восьмой от 4π, или π/2.

Легко проверить, что теорема Хэрриота-Жирара дает тот же результат. Сумма трех внутренних углов этого треугольника равна 3π/2. Поэтому, согласно теореме, площадь треугольника равна (3π/2) — π = π/2, что совпадает с предыдущим вычислением.

Это соотношение было независимо открыто Хэрриотом и Жираром. Британский ученый Томас Хэрриот — личность загадочная. Он был талантливым и активным исследователем, но никогда не публиковал своих работ. После его смерти осталось десять тысяч страниц неопубликованных рукописей, диаграмм, измерений и вычислений. Один биограф писал, что отвращение Хэрриота к публикации «во многом можно объяснить неблагоприятными внешними условиями, проволочками и нежеланием публиковать трактат, если, как он думал, его еще можно улучшить»78. Многие его статьи были напечатаны посмертно. Больше всего он известен работами по алгебре, но занимался также оптикой, астрономией, химией и лингвистикой. Хэрриот, подобно Лейбницу и Эйлеру, снискал репутацию автора новой и элегантной математической нотации. К сожалению, из-за трудностей типографского набора нестандартных символов не все его идеи представлены в печатном виде и потому не получили широкого признания. Но два символа дошли до наших дней: < (меньше) и > (больше). Очень мало известно о личной жизни Хэрриота. В 1585 г. сэр Уолтер Рэйли отправил его в годичное путешествие в Новый Свет в качестве землемера и картографа. Так что, по-видимому, он был первым профессиональным математиком, ступившим на землю Северной Америки.

Французский математик Альбер Жирар обосновался в Голландии, скорее всего, потому что, будучи протестантом, не мог жить в отчем доме во французской Лотарингии. Сегодня он известен своими работами по алгебре и тригонометрии. Он первым стал использовать сокращения sin, tan и sec для тригонометрических функций синус, тангенс и секанс, а также символ ∛ для обозначения кубического корня. Также Жирар первым из математиков придал геометрический смысл отрицательным числам. Он писал: «Отрицательное решение в геометрии объясняется движением в обратном направлении, а знак минус означает возврат назад, тогда как + — продвижение вперед»79.

Исторически с формулой площади сферических треугольников связывается имя Жирара, а не Хэрриота. Это и понятно, потому что первым в печати появилось доказательство Жирара, опубликованное в 1629 году80. Жирар известен своим лаконичным стилем, в его доказательствах часто отсутствуют детали. Даже самому Жирару это доказательство казалось неудовлетворительным — он назвал результат «вероятным заключением»81. Двадцатью шестью годами раньше эту же теорему доказал Хэрриот, о чем Жирар не знал. Разумеется, как мы уже сказали, Хэрриот не опубликовал ни этот, ни какой-либо другой свой результат. Но и в секрете он его не держал. Его доказательство было известно современникам; британский математик Генри Бриггс (1561–1630) сообщил Кеплеру о результате Хэрриота и включил его в список великих открытий своего времени. Но нет никаких свидетельств того, что Жирару было известно о доказательстве Хэрриота.

Поскольку Хэрриот первым доказал теорему, а Жирар первым опубликовал ее, теперь этот результат называется теоремой Хэрриота-Жирара. Стоит отметить, что доказательство Херриота гораздо проще и элегантнее доказательства Жирара. Приведенное ниже рассуждение принадлежит Лежандру, но оно очень похоже на доказательство Хэрриота.

В доказательстве Жирара остроумно используется объект, называемый двуугольником (по аналогии с треугольником). Это область, ограниченная двумя большими окружностями (рис. 10.5). Две большие окружности всегда пересекаются в двух диаметрально противоположных точках сферы. Если две окружности пересекаются под углом a с одной стороны, то и с другой стороны они тоже пересекаются под углом a. Если угол a измерен в радианах, то площадь двуугольника (на единичной сфере) равна 2a. Этот факт легко выводится из простой пропорции: площадь двуугольника относится к полной площади сферы, как угол a к 2π (что видно по рис. 10.6). Поэтому имеем

Рис. 10.5. Двуугольник на сфере


Теперь рассмотрим на единичной сфере геодезический треугольник ABC с внутренними углами a, b и c. Этот треугольник содержится в некоторой полусфере. Продолжим стороны ABC до пересечения с границей полусферы. Обозначим (см. рис. 10.7) D, E, F, G, H, I точки, в которых эти окружности пересекаются с краем полусферы.

Рис. 10.6. Сферический двуугольник (слева) и вид сверху (справа)

Рис. 10.7. Большие окружности на полусфере


Перейти на страницу:

Похожие книги