Читаем Жемчужина Эйлера полностью

Став обладателем бумаг Декарта, Клерселье начал публиковать их. Он также предоставил документы в распоряжение ученых для исследования. Одним из математиков, заинтересовавшихся побывавшими в воде заметками Декарта, был Лейбниц. Во время одной из своих поездок в Париж Лейбниц снял копии некоторых заметок Декарта о многогранниках, датируемых приблизительно 1630 годом. Эти важные заметки теперь называются «De solidorum elementis» (Об элементах геометрических тел).

Клерселье умер в 1684 году, через восемь лет после посещения Лейбница, не успев опубликовать часть рукописей, в т. ч. и «Об элементах геометрических тел». Оригинала больше никто не видел. Копия, принадлежавшая Лейбницу, пропала, и двести лет о ней не было ни слуху ни духу. Не будь на то воли провидения, мы никогда не узнали бы о прозорливой работе Декарта по многогранникам.

Фуше де Карейль, изучавший наследие Декарта в XIX веке, знал из писем Лейбница о том, что тот скопировал пропавшие впоследствии рукописи Декарта. В 1860 году он искал эти документы в хорошо организованном собрании трудов Лейбница в Ганноверской королевской библиотеке, но не нашел. Однако фортуна оказалась к нему благосклонна, и он обнаружил пыльную кипу неизвестных и некаталогизированных бумаг, принадлежащих Лейбницу, в каком-то позабытом шкафу. Именно в этой кипе де Карейль отыскал копию работы «Об элементах геометрических тел».

Как и все изучавшие многогранники до него, Декарт принял метрический подход. Во многих его формулах встречаются величины углов. Но, в отличие от своих предшественников, он, как и Эйлер сто лет спустя, подошел к многогранникам с комбинаторной точки зрения: он подсчитывал признаки многогранника и выводил алгебраические соотношения между ними. Если Эйлер считал вершины, ребра и грани и обнаружил формулу V — E + F = 2, то Декарт считал вершины (которые, как и Эйлер, называл телесными углами), грани и плоские углы.

В своих заметках Декарт привел много фактов, касающихся многогранников. Он не дал полных доказательств, но нетрудно видеть, как одни формулы логически вытекают из других. Первая важная теорема обобщала на многогранники хорошо известный для многоугольников результат: сумма внешних углов равна 360°. Мы подробно обсудим этот результат, который теперь называется формулой Декарта, в главе 20. Он также дал, вероятно, первое алгебраическое доказательство того, что платоновых тел всего пять.

Завершалась работа следующим равенством, связывающим количество граней, вершин и плоских углов (соответственно F, V и P):

P = 2F + 2V — 4.

Именно из-за этого открытия некоторые ученые считают, что формула Эйлера должна носить имя Декарта. Нужно просто заметить, что число плоских углов многогранника в два раза больше числа ребер (например, у куба 24 плоских угла и 12 ребер). Поэтому если имеется E ребер, то плоских углов будет P = 2E. Подстановка 2E вместо P дает 2E = 2F + 2V — 4. Осталось поделить на два, изменить порядок членов — и мы получим знакомую формулу для многогранников.

Возникает вопрос: действительно ли Декарт открыл формулу Эйлера? Если да, то не должна ли она носить его имя? После обнаружения заметок Декарта вспыхнул спор, который не утихает и по сей день. Признанные математические авторитеты расходятся в этом вопросе. Даже сегодня встречаются книги, в которых решительно утверждается, что Декарт открыл — или, наоборот, не открыл — эту формулу раньше Эйлера. Разумеется, следует помнить о словах выдающегося философа Томаса Куна (19221996): «Тот факт, что он [вопрос о приоритете] поставлен… есть симптом какого-то искажения образа науки, которая отводит открытию такую фундаментальную роль»73.

Эрнест де Жонкьер (1820–1901), один из первых и самых пламенных защитников приоритета Декарта, предложил назвать теорему формулой Декарта-Эйлера. В 1890 г. он писал: «Невозможно отрицать, что он ее знал, поскольку она выводится так прямо и так просто, можно сказать интуитивно, из двух теорем, которые он только что сформулировал»74. Сторонники Жонкьера говорят, что формула с такой очевидностью вытекает из работы Декарта, что либо он знал об этом соотношении, либо был настолько близок к открытию теоремы, что она должна носить его имя. Они считают, что если бы Декарт подготовил рукопись к публикации, то сформулировал бы теорему в более привычном для нас виде. Кроме того, даже если Декарт не знал точной формулы, он доказал теорему, логически эквивалентную формуле Эйлера. Он и Эйлер просто выбрали разные признаки для подсчета. В наши дни формулу для многогранников не так уж редко называют формулой Декарта-Эйлера.

Удивительно, сколько споров связано с понятием ребра многогранника, которое, как мы уже говорили, было введено Эйлером. Для нас этот признак очевиден, но во времена Декарта у него не было названия. Для него ребро многогранника был просто стороной одной из многоугольных граней; ребра служили для образования углов — и только. Чтобы придать привычный вид формуле Эйлера, Декарту нужно было придумать понятие ребра.

Перейти на страницу:

Похожие книги