Узел — это окружность, а окружность встречается в качестве края поверхностей. Удивительно, но можно найти поверхности с завязанным в узел краем. На рис. 18.4 мы видим, что тривиальный узел — это край диска (в этом нет ничего неожиданного), а трилистник — край трижды перекрученной ленты Мёбиуса. На рис. 17.10 мы видели еще один пример поверхности с краем в виде трилистника.
Рис. 18.4. Тривиальный узел — это граница диска, а трилистник — край трижды перекрученной ленты Мёбиуса
Замечательно не то, что можно найти поверхность с завязанным в узел краем, а то, что
В качестве забавного эксперимента попробуйте создать поверхности с завязанными в узел краями из мыльных пузырей. Для этого изготовьте узел из жесткой проволоки (плечики для одежды подойдут для небольших узлов, хотя они слишком жесткие и недостаточно длинные для сложных узлов) и погрузите его в мыльный раствор. Проткните дырки, чтобы сформировать одну поверхность[11]
.Трилистник на рис. 18.4 — край неориентируемой поверхности (напомним, что в трехмерном пространстве неориентируемая и односторонняя — синонимы). Подобной ситуации можно избежать — если дан произвольный узел, то можно построить ориентируемую поверхность, краем которой будет этот узел. Такая поверхность называется
Рис. 18.5. Герберт Зейферт
Быть может, не менее удивительной, чем сама теорема, является простота построения таких поверхностей. Мы приведем элегантный алгоритм Зейферта, открытый им в 1934 году165
.Проиллюстрируем алгоритм на примере трилистника. Для начала выберем одну из двух возможных ориентаций узла, т. е. направление его обхода. Затем спроецируем узел на плоскость. Допустима почти любая проекция. Мы хотим избежать «плохих» проекций, например когда три пряди пересекаются в одной точке или два участка веревки проецируются друг на друга и образуют множество, состоящее более чем из одной точки. Но в остальном проекция может быть сколь угодно сложной.
Затем воспользуемся этой проекцией, чтобы создать набор так называемых
Рис. 18.5. Окружности Зейферта для трилистника и соответствующие диски
Теперь соединим диски вместе, прикрепив прямоугольные перекрученные ленты. Точнее, в каждом месте, где было пересечение, прикрепим ленту, перекрученную в направлении, определяемом исходным пересечением (см. рис. 18.7). Хотя сразу это и не очевидно, нетрудно доказать, что эта процедура всегда порождает ориентируемую поверхность с краем.
На рис. 18.8 показано, как завершается построение поверхности Зейферта для трилистника. А на рис. 18.9 весь процесс повторен для квадратного узла. Эта поверхность образована тремя дисками и шестью лентами.
Согласно теореме классификации, нам «известны» все возможные поверхности. Поверхность Зейферта — это ориентируемая поверхность с одной компонентой края. Поэтому она должна быть гомеоморфна сфере или тору с g дырками и вырезанным диском. Вот теперь мы в полной мере ощутили всю мощь теоремы классификации, поскольку поверхности Зейферта вовсе не выглядят как проколотые торы. Теоретически можно было бы приклеить диск к краю одной из поверхностей Зейферта и получить замкнутую поверхность, но для такого склеивания пришлось бы выйти в четвертое измерение.
Рис. 18.7. Прикрепление перекрученной ленты
Рис. 18.8. Поверхность Зейферта для трилистника
Рис. 18.9. Поверхность Зейферта для квадратного узла
Поскольку нам известно, что поверхность Зейферта ориентируемая и имеет один край, то для ее классификации нужно знать только эйлерову характеристику. Пусть S — поверхность Зейферта, построенная из d дисков и b лент. Так как эйлерова характеристика диска равна 1 (а значит, эйлерова характеристика d непересекающихся дисков равна d), достаточно понять, как влияет добавление ленты к поверхности. Предположим, что мы прикрепляем оба конца ленты к поверхности с краем (необязательно связной). При этом добавляется одна грань, два ребра и ни одной вершины. В силу хорошо нам знакомой знакопеременной суммы, определяющей эйлерову характеристику, добавление ленты уменьшает эту величину на 1. Поэтому добавление b лент уменьшает ее на b.