Одно из выдающихся событий в истории математики: юный робкий Риман читает престарелому легендарному Гауссу, который не переживет следующую весну, лекцию о следствиях идей, которые старик, должно быть, считал своими и которые втайне лелеял. В. Вебер вспоминает, как был ошеломлен Гаусс и с каким необычайным чувством он по пути домой хвалил глубину мыслей Римана153
.Большинство работ Римана относятся к комплексному анализу — изучению комплексных чисел и комплексных функций. Комплексное число имеет вид a + bi, где a и b — вещественные, а i = √–1. Именно стремление полностью понять природу комплексных функций лежало в основе большей части его работ — по теории функций, геометрии, дифференциальным уравнениям в частных производных и топологии. Некоторые работы были опубликованы посмертно, в т. ч. трактат по интегрированию, идеи которого теперь входят в любой вводный курс математического анализа. Печально, что жизнь этого оригинального мыслителя оборвалась из-за туберкулеза всего в сорок лет.
Поверхностями Риман заинтересовался в связи с комплексным анализом, а не с теорией многогранников. Поскольку комплексные числа имеют две степени свободы (a и b), множество комплексных чисел образует двумерную плоскость — она выглядит как евклидова плоскость, только одна ось вещественная, а другая мнимая.
Риман изучал многозначные комплексные функции. Например, рассмотрим функцию f(z) = ∜z. Чему равно значение f(16)? Это должно быть число w, обладающее тем свойством, что w4
= 16. Нетрудно видеть, что в комплексной области таких чисел четыре: 2, –2, 2i, –2i. Следовательно, одному входу соответствует четыре выхода. Интерпретировать это можно, сказав, что график функции имеет несколько уровней, или ветвей. Риман остроумно решил рассматривать такой граф как поверхность, которая теперь называетсяИменно отсюда берут начало исследования Римана по топологии. Он ввел понятие рода поверхности (и связанное с ним понятие
Первым, кто сформулировал и доказал теорему классификации для ориентируемых поверхностей, был Мёбиус. В распоряжении Мёбиуса был инструмент, которого не было у Римана. В 1863 году он развил идею элементарной связи (то, что мы теперь называем гомеоморфизмом). Поэтому он мог с некоторой точностью сказать, что такое «две поверхности одинаковы». Мёбиус показал, что любая ориентируемая поверхность топологически эквивалентна одной из нормальных форм, показанных на рис. 17.9: сфере, тору, двойному тору и т. д.155
Рис. 17.9. Нормальные формы ориентируемых поверхностей по Мёбиусу
В 1866 году Камиль Жордан доказал, что любые две ориентируемые поверхности с краем гомеоморфны тогда и только тогда, когда имеют одинаковый род и одинаковое число компонент края156
. Первую полную формулировку и доказательство теоремы классификации, в т. ч. для неориентируемых поверхностей, дал Дик в 1888 году157. Однако это было еще до современных определений поверхности и гомеоморфизма. Первое по-настоящему строгое доказательство теоремы классификации дали Макс Ден (1878–1952) и Поул Хеегард (1871–1948) в 1907 году158.Мы не будем доказывать теорему классификации, но есть целый ряд вполне доступных изложений. Некоторые сводятся к построению поверхности для получения сферы с ручками и скрещенными колпаками. Например, доказательство ZIP («zero irrelevancy proof») Джона Конвея начинается с кучи треугольников — рассыпанных кусочков пазла триангулированной поверхности. По мере того как каждый новый треугольник помещается на расширяющуюся поверхность, она остается сферой с ручками, скрещенными колпаками и краем159
. Другие доказательства построены ровно наоборот — начав с поверхности, мы вырезаем из нее цилиндры и ленты Мёбиуса (т. е. ручки и скрещенные колпаки) и на каждом шаге заполняем дырки дисками, пока не получится сфера.На первый взгляд может показаться, что род ориентируемой поверхности определить легко — ведь это же просто сфера с ручками. Но не всегда поверхность выглядит как одна из нормальных форм Мёбиуса. Например, первая поверхность на рис. 17.10 — пример сферы с 4 ручками, она гомеоморфна тору с 4 дырками.
Рис. 17.10. Необычные поверхности