Ориентируемость, размерность и количество компонент края — три важных топологических инварианта. Еще одним топологическим инвариантом, пожалуй, самым важным из всех, является величина V — E + F. Пусть дана поверхность S, разбитая на V вершин, E ребер и F граней (конечно, нужно по-прежнему избегать кольцеобразных граней). Определим
Говоря, что эйлерова характеристика — топологический инвариант, мы имеем в виду, что у каждой поверхности своя формула Эйлера. Например, на сфере на рис. 17.6 имеется 62 вершины, 132 ребра и 72 грани, поэтому ее эйлерова характеристика равна
χ(сфера) = 62 — 132 + 72 = 2.
Как мы знаем, это верно для любого разбиения сферы или чего-то, гомеоморфного сфере.
Рис. 17.6. Разбиения сферы, тора и бутылки Клейна
У тора на рис. 17.6 имеется 8 вершин, 16 ребер и 8 граней, поэтому его эйлерова характеристика равна
χ(тор) = 8 — 16 + 8 = 0.
Аналогично у бутылки Клейна на рис. 17.6 8 вершин, 16 ребер и 8 граней, поэтому
χ(бутылка Клейна) = 8 — 16 + 8 = 0.
Доказательство того, что эйлерова характеристика — топологический инвариант, проводится в несколько шагов. Сначала нужно показать, что любую поверхность можно разбить на конечное число вершин, ребер и граней. То есть не существует поверхностей настолько странных, что для них не найдется конечного разбиения (именно здесь используется предположение о компактности, обсуждавшееся в главе 6, — у евклидовой плоскости и открытого единичного диска нет конечного разбиения, но они и не рассматриваются). В случае многогранника разбиение уже задано — это просто его вершины, ребра и грани. Произвольная поверхность не имеет встроенного разбиения. Как ни странно, первое доказательство того, что любую поверхность можно разбить на вершины, ребра и грани, появилось только в 1924 году151
.Далее мы должны доказать, что эйлерова характеристика не зависит от выбора разбиения. Нетрудно видеть, что при добавлении вершин и ребер в разбиение величина V — E + F не изменяется. Поэтому мы задаемся вопросом: если даны два разбиения P и P', то можно ли добавить в них вершины и ребра, так что оба разбиения будут иметь одинаковое количество вершин, ребер, треугольных граней, квадратных граней, пятиугольных граней и т. д. и их относительное расположение будет одинаково? Эта проблема была поставлена довольно рано и получила название
Наконец, мы должны показать, что две гомеоморфные поверхности имеют одинаковую эйлерову характеристику. Если поверхности S и S' гомеоморфны и P — разбиение S, то, поскольку гомеоморфизм — взаимно однозначное соответствие между S и S', мы можем воспользоваться им, чтобы перенести разбиение P на S'. Очевидно, что χ(S) = χ(S'). Таким образом, мы дали набросок полного доказательства нашей теоремы — что эйлерова характеристика является топологическим инвариантом.
Одна из самых трудных проблем при изучении формулы Эйлера для многогранников — понять влияние «туннелей» на величину V — E + F. Люилье и Гессель утверждали, что если многогранник имеет g туннелей, то V — E + F = 2 — 2g. В современной терминологии это означает, что эйлерова характеристика равна 2 — 2g. Проблема в том, что они не определили понятие туннеля. Вместо туннелей мы теперь используем для описания этих топологических особенностей ручки (в смысле главы 16). Интересно, что они обращали внимание на дырки в телах, а мы — на ручки, ограничивающие эти дырки.
Рассмотрим, как на эйлерову характеристику влияет добавление ручки к сфере. Мы должны вырезать из сферы два диска, вместо которых можно будет прикрепить ручки. С равным успехом вместо дисков можно взять треугольные грани (рис. 17.7). Если в разбиении нет треугольных граней, разобьем какую-нибудь грань на треугольники. Мы знаем, что эйлерова характеристика сферы равна 2, а ручка является цилиндром, так что ее эйлерова характеристика равна 0. Поэтому до разрезания и склеивания мы имеем
V — E + F = χ(сфера) + χ(ручка) = 2 + 0 = 2.
Рис. 17.7. Разбиения сферы, тора и бутылки Клейна
Вырезав два треугольника, мы теряем две грани. Приклеивая ручку к сфере, мы соединяем шесть пар ребер. Таким образом, двенадцать ребер превращаются в шесть. После разрезания и склеивания V и E уменьшаются на шесть, а F уменьшается на два, так что V — E + F уменьшается на два. Следовательно,
V — E + F = χ(сфера) + χ(ручка) — 2 = 2–2 = 0.
Разумеется, мы знаем, что сфера с ручкой — это тор, так что результат не вызывает удивления.