Впервые проективная плоскость возникла не в этом контексте — как объект, полученный склеиванием поверхностей. Как вытекает из самого названия, это был предмет изучения проективной геометрии — геометрической системы, в которой любые две прямые, даже параллельные, пересекаются в какой-то точке. Клейн и Людвиг Шлефли (1814–1895) первыми поняли, что проективная плоскость неориентируема.
Рис. 16.15. Проективная плоскость
В приложении A показано, как склеить из бумаги цилиндр, тор, ленту Мёбиуса, бутылку Клейна и проективную плоскость.
Клейн предложил один метод создания сложных поверхностей из более простых — попарное склеивание сторон многоугольников. А сейчас мы представим другой способ. Начнем со сферы и будем приклеивать к ней цилиндрические
Как видно по рис. 16.16, чтобы добавить к поверхности ручку, нужно вырезать из нее два диска и приклеить к краям дырок концы цилиндра. Сфера с одной ручкой — это тор. Для построения двойного тора нужно добавить еще одну ручку, а для построения тора с g дырками — добавить g ручек.
Рис. 16.16. Сфера с ручкой (тор)
Количество ручек на такой поверхности тесно связано с топологической величиной —
Для иллюстрации этого понятия рассмотрим сферу. Разрез по любой простой замкнутой кривой разделяет сферу на две части. Это еще одно применение теоремы Жордана — как и на плоскости, простая замкнутая кривая делит сферу на две области. Поэтому род сферы равен 0. С другой стороны, поверхность тора можно разрезать вдоль петли, так что она останется связной (рис. 16.17), но после первого разреза найти еще одну такую замкнутую кривую невозможно. Поэтому род тора равен 1.
Рис. 16.17. Поверхности рода 1, 2 и 3
Род сферы с ручками просто равен числу ручек. Двойной тор имеет род 2, и в общем случае род тора с g дырками равен g. Понятие рода поверхности дает строгий способ определения числа туннелей Люилье. Можно было бы определить род и для неориентируемых поверхностей, и некоторые так и делают. Но поскольку род тесно связан с количеством дырок в торе, то обычно в неориентируемом случае он не используется.
Созданию ориентируемых поверхностей с помощью добавления ручек есть аналог в неориентируемом случае. Чтобы разобраться в этой процедуре, мы должны будем вернуться к ленте Мёбиуса. Одним из ее отличительных свойств является наличие единственного края, эквивалентного окружности. Обычно ленту Мёбиуса рисуют так, что эта окружность дважды обвивает скрученный цилиндр. Наша цель — деформировать ленту Мёбиуса, так чтобы ее край выглядел как обычная, а не дважды скрученная окружность. Очевидно, что для этого упражнения топологической йоги придется выйти в четвертое измерение.
На рис. 16.18 мы видим деформированную таким образом ленту Мёбиуса. Заметим, что эта фигура пересекает самое себя по целому отрезку прямой. Самопересечение в верхней части этой ленты Мёбиуса с верхней горбушкой и с перекрещивающейся поверхностью внизу часто называют
Рис. 16.18. Лента Мёбиуса — то же самое, что скрещенный колпак
Подобно тому, как ориентируемые поверхности создаются путем присоединения ручек, неориентируемые можно создавать путем присоединения лент Мёбиуса. Для этого вырежем из поверхности диск и приклеим кольцевой край ленты Мёбиуса к краю дырки. На рис. 16.19 видно, что наглядно представить это склеивание проще, если заменить обычную ленту Мёбиуса скрещенным колпаком. Мы создаем проективную плоскость, добавляя к сфере один скрещенный колпак. По-другому можно сказать, что проективная плоскость — это лента Мёбиуса с приклеенным к ее краю диском.
Рис. 16.19. Сфера со скрещенным колпаком (создание проективной плоскости)
Хотя представить это еще сложнее, сфера с двумя скрещенными колпаками есть не что иное, как бутылка Клейна. Эквивалентно, бутылку Клейна можно получить, склеив краями две ленты Мёбиуса. Приклеивание более двух скрещенных колпаков к сфере порождает еще более странные поверхности.
Теперь у нас есть два способа построения ориентируемых и неориентируемых поверхностей. В следующей главе мы рассмотрим, как к таким поверхностям применяется формула Эйлера. Мы также познакомимся с теоремой о классификации поверхностей, которая утверждает, что любую замкнутую поверхность можно получить добавлением к сфере ручек и скрещенных колпаков.
Приложения к главе
136. Listing (1847).
137. Tait (1883).
138. Lefschetz (1970).
139. Из интервью Maurer (1983).
140. Klein (1882/83).
141. Brahana (1921).
142. Clarke (2000).
143. Gardner (1990).
144. Gardner (1956).
145. Listing (1861–1862).