Читаем Жемчужина Эйлера полностью

Теорема классификации говорит, что любая поверхность гомеоморфна сфере с ручками или сфере со скрещенными колпаками. Но ничего не говорит о комбинации того и другого. Например, вторая картинка на рис. 17.10 — сфера с одной ручкой и одним скрещенным колпаком. Как ее классифицировать? Согласно приведенным выше вычислениям, эйлерова характеристика сферы равна 2, добавление ручки увеличивает ее на 2, а добавление скрещенного колпака уменьшает на 1. Поэтому эйлерова характеристика этой поверхности равна –1. Из-за наличия скрещенного колпака мы знаем, что поверхность неориентируемая. По теореме классификации, она гомеоморфна сфере с тремя скрещенными колпаками, которая называется поверхностью Дика160.

Беглый взгляд на третью поверхность на рис. 17.10 показывает, что она двусторонняя (ориентируемая) и содержит только одну компоненту края. Интересно, что сам край образует так называемый трилистный узел. В следующей главе мы увидим, что любой узел можно получить как край ориентируемой поверхности с одной компонентой края. Построив разбиение этой поверхности и посчитав вершины, ребра и грани, мы найдем, что ее эйлерова характеристика равна –1. По теореме классификации поверхностей с краем, эта поверхность гомеоморфна тору с вырезанным диском.

И напоследок вернемся к большому икосаэдру и большому додекаэдру — многогранникам Кеплера-Пуансо с треугольными и пятиугольными гранями (см. главу 15). Хотя с первого взгляда этого не скажешь, они являются ориентируемыми поверхностями (пересекающимися в трехмерном пространстве). Эйлерова характеристика большого икосаэдра равна 2, поэтому он гомеоморфен сфере, а большого додекаэдра –6, поэтому он гомеоморфен тору с 4 дырками.


Приложения к главе

149. Poincare (1895).


150. Mobius (1863).


151. Rado (1925).


152. Papakyriakopoulos (1943).


153. Quoted in Freudenthal (1975).


154. Riemann (1851); Riemann (1857).


155. Mobius (1863).


156. Jordan (1866a).


157. Dyck (1888).


158. Dehn and Heegaard (1907).


159. Francis and Weeks (1999).


160. Там же.


Глава 18

Узловатая проблема

О время, здесь нужна твоя рука


Мне не распутать этого клубка!


— Вильям Шекспир, «Двенадцатая ночь»161



Одним из самых ранних топологических исследований было изучение узлов. Все мы знакомы с узлами. Они привязывают лодку к берегу, не дают свалиться с ног ботинкам и безнадежно запутывают кабели и провода рядом с компьютерами. Но это, строго говоря, не математические узлы. У математического узла нет свободных концов; это топологическая окружность в трехмерном евклидовом пространстве. (Чтобы превратить электрический удлинитель в математический узел, просто воткните вилку на одном его конце в розетку на другом.)

На рис. 18.1 показаны проекции шести математических узлов: тривиальный узел, трилистник, восьмерка, печать Соломона, пряничный человечек (за неимением общепринятого названия) и квадратный узел.

Рис. 18.1. Тривиальный узел, трилистник, восьмерка, печать Соломона, пряничный человечек и квадратный узел


В предыдущей главе мы подчеркивали, что топологов обычно интересуют внутренние, а не внешние свойства топологических объектов. Теория узлов — примечательное исключение. Узел интересен тем, как окружность располагается в пространстве, — своей внешней конфигурацией. Внутренне все узлы идентичны — каждый гомеоморфен окружности. Поэтому при изучении узлов «одинаковый» не значит гомеоморфный. Два узла считаются одинаковыми, если один можно непрерывно деформировать в другой, т. е. если между ними существует изотопия. Первые три узла на рис. 18.2 изотопичны (все они эквивалентны тривиальному узлу). Изотопичны и последние два узла (оба эквивалентны трилистнику). Но, как мы увидим, тривиальный узел неизотопичен трилистнику.

Рис. 18.2. Три проекции тривиального узла и две проекции трилистника


Главная цель теории узлов — их классификация. Как и для поверхностей, мы хотели бы найти признаки, позволяющие сказать, одинаковы два узла или различны. В идеале желательно, как и для поверхностей, составить исчерпывающий и не содержащий повторов список всех узлов. На данный момент полного списка еще не существует, но в этом направлении многое сделано. Скромная цель этой главы — разработать средства, с помощью которых можно было бы доказать, что все узлы на рис. 18.1 различны. Одно из таких средств требует классификации поверхностей и эйлеровой характеристики.

Перейти на страницу:

Похожие книги