Читаем Жемчужина Эйлера полностью

Разумеется, Эйлер и Декарт рассматривали только выпуклые многогранники. Но оказывается, что после небольшой модификации теорема применима ко всем многогранникам, даже топологически не являющимся сферами. Полный угловой недостаток — это топологический инвариант, имеющий простую связь с эйлеровой характеристикой многогранника.


Формула Декарта

Полный угловой недостаток любого многогранника P равен 2πχ(Р).


Куб, тетраэдр и куб с вырезанным уголком топологически эквивалентны сфере, поэтому их эйлерова характеристика равна 2, а значит, полный угловой недостаток равен 2πχ(Р) = 2π 2 = 4π. В качестве тела, отличного от сферы, рассмотрим многогранный тор, показанный на рис. 20.7. В нем шестнадцать вершин, в восьми из них угловой недостаток равен π/2, а в остальных восьми имеется угловой избыток π/2 (угловой недостаток —π/2). Поэтому полный угловой недостаток равен нулю — эйлеровой характеристике тора. Предлагаем читателю проверить формулу Декарта для бумажного многогранника из приложения A.

Докажем формулу Декарта. Пусть P — многогранник с V вершинами, E ребрами и F гранями, а T — полный угловой недостаток P. Мы должны показать, что T = 2πχ(Р) = 2πV — 2πE + 2πF.

Выберем любую грань многогранника. Предположим, что ее плоские углы равны a1…, an. По теореме о сумме внутренних углов:

a1 +… + an = (n — 2)π.

После перегруппировки членов получаем:

(a1 +… + an) — nπ +2π = 0.

Рис. 20.7. Полный угловой недостаток тора равен нулю


Это равенство можно наглядно представить следующим образом. Если написать —π на каждом ребре грани, величину угла в каждой вершине и 2π в середине грани (см. рис. 20.8), то сумма этих величин будет равна 0.

Рис. 20.8. Для π-угольника (a1 +… + an) — nπ + 2π = 0


Проделаем то же самое для всех граней P и просуммируем. Каждая грань вносит в сумму 2π, а каждое ребро –2π (по —π с каждой стороны). Поэтому

S — 2πЕ + 2πF = 0,

где S — сумма всех внутренних углов P. Теперь прибавим T, полный угловой недостаток, к обеим частям равенства:

(T + S) — 2πЕ + 2πF = T.

Поскольку T — полный угловой недостаток, то, прибавив T, мы прибавили ровно столько, что сумма углов при каждой вершине снова стала равна 2π. Иными словами, T + S равно 2πV. Стало быть, T = 2πV — 2πЕ + 2πF = 2πχ(Р).

Формула Декарта — красивая иллюстрация связи между топологией и геометрией. Поскольку полный угловой недостаток выражается через эйлерову характеристику, мы видим, что топология многогранника полностью определяет один из аспектов его глобальной геометрии.

В качестве приложения этой теоремы предлагаем читателю найти новое доказательство того, что платоновых тел всего пять.

В этой книге мы, как правило, предполагали, что ребра, разбивающие поверхность на грани, — топологические сущности. Ребра можно произвольно изгибать и создавать грани самой причудливой формы. В этой главе мы рассматриваем гораздо менее разнузданную дисциплину — геометрию. В идеале хотелось бы, чтобы грани были многоугольниками с прямолинейными ребрами. На искривленной поверхности ребра не могут быть прямыми, поэтому взамен мы требуем, чтобы они были геодезическими кривыми.

В главе 10 мы ввели понятие геодезической на сфере. Это была дуга большой окружности. Оказывается, что геодезическую кривую можно определить на любой жесткой поверхности. Она характеризуется минимальной длиной — кратчайший путь между двумя точками на поверхности проходит по геодезической. Хорошо известное выражение «кратчайшее расстояние между двумя точками измеряется по прямой» следовало бы заменить на «кратчайшее расстояние между двумя точками измеряется по геодезической». В оставшейся части этой главы мы будем предполагать, что ребрами на поверхностях являются геодезические кривые, так что грани являются геодезическими многоугольниками.

Работа с геодезическими многоугольниками имеет то преимущество, что мы можем измерять углы в вершинах. Ребра кривые, но если рассматривать углы под микроскопом (фигурально выражаясь), то они будут казаться прямыми, поэтому их можно измерять.

Для треугольников на плоскости сумма углов равна 180°, но на типичной поверхности это правило не действует. Напомним, что Хэрриот и Жирар доказали, что сумма внутренних углов геодезического треугольника на сфере больше 180° (глава 10). Существуют другие поверхности, например седловидные, для которых сумма внутренних углов геодезического треугольника меньше 180° (см. рис. 20.9).

Рис. 20.9. Треугольник с угловым избытком (слева) и с угловым недостатком (справа)


Поэтому можно говорить об угловом избытке или угловом недостатке геодезического треугольника — величине, на которую сумма внутренних углов отличается от суммы углов плоского треугольника. Угловым избытком геодезического треугольника с внутренними углами a, b, c называется величина (a + b + с) — π. Если (a + b + с) — π отрицательно, то у треугольника имеет место угловой недостаток.

Перейти на страницу:

Похожие книги