Читаем Жемчужина Эйлера полностью

Аналогично можно определить угловой избыток или недостаток геодезического n-угольника. Как мы знаем, сумма внутренних углов плоского n-угольника равна (n — 2)π. Поэтому угловой избыток n-угольника с внутренними углами a1, a2, …, an равен (a1 + a2 + … + an) — (n — 2)π.

Важно не путать угловой избыток и недостаток для многогранников и для поверхностей. У многогранника угловой избыток или недостаток испытывают вершины, а у поверхности — грани. Одинаковые названия могут ввести в заблуждение, но, как мы увидим ниже, на самом деле они тесно связаны.

Возьмите комок пластилина и вылепите октаэдр. Каждая его грань — равносторонний треугольник, поэтому угловой недостаток в каждой вершине равен 2π — 4(π/3) = 2π/3. Поскольку всего вершин шесть, полный угловой недостаток равен 6(2π/3) = 4π, что согласуется с формулой Декарта. Покрасьте все ребра маркером. Затем положите многогранник на стол и раскатайте его, так чтобы он принял сферическую форму (рис. 20.10). Грани, когда-то бывшие треугольниками, стали искривленными поверхностями. Если деформация выполнена аккуратно, то прямые ребра превратятся в геодезические отрезки, а грани — в геодезические треугольники.

Рис. 20.10. Октаэдр, раскатанный в шар


После раскатывания октаэдра в шар ни в какой вершине не наблюдается углового недостатка. Все вершины разгладились, так что сумма углов при каждой вершине равна 2π. Куда же делся угловой недостаток?

Легко видеть, что в ходе этого процесса величины внутренних углов треугольника изменились. Углы при каждой вершине, которые раньше были равны 60°, теперь стали прямыми. Каждый треугольник на пластилиновом шаре имеет три прямых угла, так что сумма внутренних углов равна 3π/2. Для треугольных граней имеет место угловой избыток. Угловой недостаток в вершинах октаэдра распределился по граням шара и стал угловым избытком треугольников. Аналогично для любого разбиения поверхности на геодезические треугольники в вершинах нет ни углового недостатка, ни углового избытка, зато он есть в гранях.

Если поверхность разбита на грани, геодезические ребра и вершины, то полным угловым избытком называется сумма угловых избытков всех граней. Как полный угловой недостаток многогранника связан с его эйлеровой характеристикой (формула Декарта), так полный угловой избыток поверхности связан с ее эйлеровой характеристикой. Мы имеем следующий аналог формулы Декарта для поверхностей.


Теорема об угловом избытке для поверхностей

Полный угловой избыток поверхности S равен 2πχ(S).


Доказательство этой теоремы наверняка покажется вам знакомым. Пусть поверхность S разбита на вершины, геодезические ребра и грани. Поставим в центр каждой грани 2π, рядом с каждым ребром —π, а в каждую вершину величину угла (см. рис. 20.11). Просуммировав эти величины для одной n-угольной грани с внутренними углами a1 a2…, an, получим угловой избыток этой грани:

2π — nπ + (a1 + а2 +… + an) = (a1 + a2 +… + an) — (n — 2)π.

Рис. 20.11. Разметка поверхности: 2π на каждой грани, — π на каждом ребре и величины углов в каждой вершине


Следовательно, сумма этих величин по всей поверхности дает полный угловой избыток поверхности.

С другой стороны, каждая грань привносит 2π, каждое ребро —2π, а каждая вершина — 2π. Сумма эти значений равна 2πF — 2πЕ + 2πV = 2πχ(S), и требуемый результат доказан.

Формула Декарта и теорема об угловом избытке — красивые теоремы, показывающие, что топология в некотором смысле управляет геометрией. В следующей главе мы рассмотрим еще один пример. Мы увидим, что полная кривизна поверхности зависит от ее топологии, а та тесно связана с эйлеровой характеристикой.


Приложения к главе

183. Shakespeare (1992), 36.


184. Polya (1954), 57–58.


185. Hopf (1935).


186. Quoted in Federico (1982), 43.


187. Euler (1758b); Euler (1758a).


Глава 21

Топология искривленных поверхностей

Если бы другие размышляли над математическими истинами так глубоко и постоянно, как это делаю я, они пришли бы к моим открытиям.

— Карл Фридрих Гаусс188


Один из самых фундаментальных вопросов в геометрии плоских кривых — кривизна. Кривизна в точке x — это число k, измеряющее «крутизну» поворота в этой точке, т. е. скорость изменения направления касательного вектора. Пусть в точке x построен нормальный вектор n к кривой; если кривая изгибается в направлении n, то k > 0, если в направлении, противоположном n, то k < 0, в противном случае к = 0 (см. рис. 21.1). Чем круче изгибается кривая, тем больше (по абсолютной величине k).

Рис. 21.1. Кривые c k > 0, k < 0, k = 0 и k = 0 (слева направо)


Перейти на страницу:

Похожие книги