По теореме Жордана, у простой замкнутой кривой на плоскости есть внутренность и внешность. Поэтому можно выбрать нормальные векторы во всех точках кривой, так что все они будут указывать внутрь. После этого мы сможем вычислить кривизну в каждой точке кривой. Обычно кривизна изменяется от точки к точке (см. рис. 21.2). Просуммировав кривизну по всем точкам кривой, мы получим
Рис. 21.2. Кривая с областями положительной, отрицательной и нулевой кривизны; нормальные векторы указывают внутрь
Иными словами, полная кривизна всех простых замкнутых гладких кривых одинакова! Если бросить на стол веревочную петлю, так чтобы она не пересекала самое себя, то области отрицательной и положительной кривизны компенсируют друг друга, так что полная кривизна будет равна 2π. То есть факт гомеоморфности окружности однозначно определяет полную кривизну. Снова мы видим, как топология управляет геометрией.
Мы не станем доказывать эту теорему, но она тесно связана с теоремой о вращающихся касательных из предыдущей главы. И снова студент, знакомый с математическим анализом, заметит, что, поскольку мы суммируем скорость изменения вращающихся касательных, полная кривизна просто равна полному изменению угла касательного вектора, т. е. 2π.
Можно рассматривать эту теорему как еще одно обобщение теоремы о сумме внешних углов многоугольника. Вдоль сторон многоугольника кривизна равна нулю, а вся его кривизна сосредоточена в вершинах и принимает вид внешних углов. Полная кривизна равна 2π.
Теперь перейдем от кривых к поверхностям. Поскольку мы изучаем геометрические свойства поверхностей, то должны считать их жесткими, а не сделанными из резины, как в топологии. Будем также предполагать, что поверхности гладкие, не имеют резких складок и углов.
Как и для кривых на плоскости, мы исследуем кривизну поверхностей в трехмерном пространстве. Снова выберем вектор n, нормальный к поверхности в точке x. Затем рассмотрим плоскость, проходящую через x и параллельную n. Пересечением этой плоскости с поверхностью является некоторая кривая, кривизну которой можно вычислить. Обычно кривизна кривых для разных плоскостей различается. Наименьшее и наибольшее значения k1
и k2 называютсяРис. 21.3. Поверхности, для которых k1
, k2 < 0 (слева), k1 > 0, k2 < 0 (в центре) и k1 = 0, k2 > 0 (справа)Именно таким способом геометры измеряли кривизну поверхностей, пока Гаусс не внес простую, но критически важную модификацию. Он перемножил главные кривизны и получил единственное значение кривизны, которое теперь называется
Как ни странно, большинство великих математиков в детстве не были вундеркиндами; их гений созревал постепенно и проявлялся на более поздних этапах жизни. Но математические способности Гаусса были очевидны уже в юном возрасте. Он родился в 1777 году в немецком герцогстве Брауншвейг. В три года Гаусс поразил своего отца Герхарда, указав ошибку в арифметических вычислениях в бухгалтерских книгах. Позже Гаусс по субботам сиживал на высоком стуле и помогал отцу.
В молодости Гаусс любил рассказывать, как в семилетнем возрасте он шокировал тупого и заносчивого школьного учителя. Учитель дал классу задание: вычислить сумму арифметической прогрессии (пусть это будет190
1 + 2 + 3 +. + 100). Гаусс почти сразу написал на своей грифельной доске число 5050, положил ее на стол скептически настроенного учителя и заявил «ligget se» (вот она). Вместо того чтобы выполнять утомительное суммирование, Гаусс заметил, что если сложить первое число с последним, второе с предпоследним и т. д., то каждая сумма будет равна 101 (1 + 100, 2 + 99, 3 + 98…). Поскольку таких пар пятьдесят, то сумма должна быть равна 50 101 = 5050.Рис. 21.4. Карл Фридрих Гаусс
Этот случай в классе положил начало цепочке событий, которая в 1791 году привлекла к Гауссу внимание герцога брауншвейгского Карла Вильгельма Фердинанда. Герцог был очарован четырнадцатилетним юношей и пообещал оплатить его обучение. Щедрый герцог заплатил за обучение Гаусса в колледже Каролинум и в Гёттингенском университете, а затем продолжал выплачивать ему жалованье до самой своей смерти от рук наполеоновской армии в 1807 году.