Предчувствие не обмануло герцога. Свой первый важный результат, доказательство закона взаимности квадратичных вычетов, он получил, когда ему было девятнадцать лет. Эта теорема, которую он называл
В качестве своей личной печати Гаусс выбрал дерево с несколькими плодами и словами
Из-за стремления к совершенству Гаусс не опубликовал много блестящих результатов. Его математический дневник (
После смерти герцога Гаусс был вынужден занять пост директора Гёттингенской обсерватории. Значительную часть последних двадцати лет жизни он потратил на занятия астрономией в обсерватории. Он дожил до 78 лет и мирно упокоился 23 февраля 1855 года.
Применяя подход Гаусса к измерению кривизны одной величиной k = k1
k2, мы можем сказать, что кривизна в точке положительна, отрицательна или равна нулю. Возвращаясь к рис. 21.3, мы видим, что если обе кривые, как края миски, загибаются в сторону нормального вектора (или в направлении от него), то знаки k1 и k2 одинаковы, и мы имеем положительную кривизну. С другой стороны, если, подобно седлу, одна кривая загибается в направлении нормального вектора, а другая — в направлении от него, то знаки k1 и k2 противоположны, и кривизна отрицательна. Если одна или обе главные кривизны равны нулю, как в случае цилиндра или плоскости, то кривизна нулевая.Важно подчеркнуть, что кривизна измеряется в одной точке. На типичной поверхности имеются области положительной, отрицательной и нулевой кривизны. Например, тор на рис. 21.5 имеет положительную кривизну в области, наиболее удаленной от центра, отрицательную — в области, ближайшей к центру, и нулевую — на границе этих областей. Существуют поверхности постоянной кривизны. Сфера (не топологическая, а настоящая) имеет постоянную положительную кривизну, а плоскость и цилиндр — нулевую кривизну. Самый известный пример поверхности постоянной отрицательной кривизны — поверхность в форме слуховой трубки, называемая псевдосферой, — не потому, что она похожа на сферу, а потому, что имеет постоянную кривизну.
Гауссова кривизна, площадь и угловой избыток тесно связаны между собой, и именно эту связь мы должны понять. Мы уже видели, что кривизна и угловой избыток связаны. На рис. 20.9 показан геодезический треугольник на сфере — с угловым избытком и на седле — с угловым недостатком. Чем менее искривлена поверхность, тем больше она напоминает плоскость и тем больше треугольник на поверхности похож на плоский треугольник. При положительной кривизне имеет место угловой избыток, а при отрицательной — угловой недостаток.
Рис. 21.5. Поверхность (тор) переменной кривизны: положительной, отрицательной и нулевой. У других поверхностей постоянная положительная кривизна (сфера), нулевая кривизна (цилиндр) и постоянная отрицательная кривизна (псевдосфера)
Также должно быть понятно, что размер имеет значение. На очень маленькие треугольники кривизна поверхности почти не влияет (представьте себе два равносторонних треугольника на земле, один с длиной стороны 1000 км, а другой — 1 см). Если увеличивать масштаб поверхности, то она будет казаться все более и более плоской. Чем меньше треугольник, тем ближе его угловой избыток к нулю.