ПРЯМОУГОЛЬНИКИ В ПОВСЕДНЕВНОЙ ЖИЗНИ: ФОРМАТЫ ТЕЛЕВИЗОРОВ
Как известно, размеры телевизоров даются в дюймах (дюйм примерно равен длине ногтевой фаланги большого пальца) и соответствуют длине диагонали экрана. В метрической системе дюйм — это 2,54 см.
В большинстве европейских стран используется метрическая система, поэтому многие европейцы, в том числе студенты, получающие образование с использованием метрической системы, с трудом определяют точный размер телевизора, который они собираются купить. Зная длину диагонали экрана в дюймах и соотношение его сторон, мы можем вычислить точные размеры телевизора в более понятных единицах длины, чтобы избежать неприятных сюрпризов, когда обнаружится, что телевизор не помещается там, где мы хотели его поставить. Телевизор формата 16:9 с экраном в 32 дюйма имеет диагональ 32∙2,54 = 81,28 см. Поэтому его реальными размерами являются ширина 9а и длина 16a. Теперь, как ни удивительно, одна из древнейших теорем математики поможет нам решить вполне современную проблему. Для нахождения размеров телевизора мы воспользуемся теоремой Пифагора:
(9а)2 + (16а)2 = 81,282
81а2 + 256а2 = 337а2 = 6 606,44
а2 = 6 606,44/337 =~ 19,6
а = √19.6 =~ 4,43 см.
Таким образом, размеры экрана 9∙4,43 = 40 см и 16∙4,43 = 71 см, что составляет 40х71 см.
Аналогичные расчеты покажут нам, что телевизор с экраном в 32 дюйма старого формата 4:3 имеет размеры 49х65 см. Отсюда следует вывод, выходящий за рамки математики: не так-то легко заменить старый телевизор новой моделью! Хотя и старый, и новый телевизоры имеют диагональ экрана одинаковой длины, скорее всего, новый телевизор не поместится в нише, где стоял старый.
Распознавание и построение «золотого» прямоугольника
Как мы уже говорили, «золотой» прямоугольник имеет соотношение сторон, равное Ф, то есть его форматное отношение равно Ф. Далее мы расскажем, как можно легко строить и распознавать «золотые» прямоугольники.
Мы начнем с некоторых свойств «золотых» прямоугольников, которые помогут нам в дальнейшем. Как мы видели, чтобы разделить отрезок А В на две части в отношении Ф, мы должны найти на отрезке точку X, удовлетворяющую условию:
Обозначим за
(
Допустим, у нас есть «золотой» прямоугольник, как на следующем рисунке слева. Если мы достроим на его большей стороне равносторонний прямоугольник (т. е. квадрат), мы получим новый прямоугольник со сторонами
Тот же самый результат мы получим, если от «золотого» прямоугольника отрежем квадрат со стороной, равной меньшей стороне исходного прямоугольника, как на рисунке ниже. Тогда у нас получится прямоугольник со сторонами
Так как
Что и требовалось доказать.