Однако (хотя это чаще всего забывают) Гольдбах причислял к простым числам и 1, о чём он объявил с полной ясностью. А тогда числа 3, 4, 5 также разлагаются в сумму трёх простых чисел. Но число 2 не разлагается в сумму трёх простых слагаемых, даже если в качестве таковых может выступать 1. В книге [2, с. 170] дан следующий перевод цитаты из письма Гольдбаха: «Таким образом, я хочу решиться высказать предположение… каждое число, большее чем 2, есть сумма трёх простых чисел». Там указывается, что переписка Эйлера с Гольдбахом цитируется по новому изданию [3]. Надо полагать, следовательно, что в издании 1965 г. цифра 1 была заменена на цифру 2. Изучение факсимильного воспроизведения письма Гольдбаха в книге [2, с. 171] оправдывает эту замену. Видно, что оговорку «die grösser ist als 1» («которое больше чем 1») Гольдбах вставил в уже написанную строку примечания. Сначала он пытается записать её между строк, но не находит места и помещает её под последней строкой примечания, где места тоже не слишком много (вспомним, что само примечание написано на левом поле и поперёк). Конец этой новой записи оказывается смазанным, а последняя цифра, принятая в издании 1843 г. за цифру 1, сливается с той линией, которой вставляемая запись обведена, как это всегда делается при вставках. Более тщательное прочтение убеждает, что указанную цифру следует читать не как 1, а как 2. Изложенное в этом абзаце составляет проблему не столько историческую, сколько литературную, хотя, впрочем, книга Фусса занимает заметное место в истории математики.
Как уже говорилось, предположение, что всякое число, начиная с 3 (в первоначальном варианте) или 6 (в современном варианте), может быть представлено в виде суммы трёх простых чисел, принято называть
Из текста письма следует, что гипотеза о возможности представления чисел в виде суммы трёх простых – в каком бы из двух вариантов её ни понимать – трактуется Гольдбахом как частный случай более общей гипотезы о возможности представления чисел в виде суммы произвольного количества простых. Наверное, было бы терминологически правильным называть первую гипотезу Гольдбаха
И в основном тексте письма, и в подстрочном примечании к нему упоминается разложение числа на сумму двух простых слагаемых (каждое из которых может быть и 1). Возможность такого разложения любого числа не утверждается и даже не предполагается в качестве гипотезы. Эта возможность фигурирует всего лишь в качестве условия того, что для данного числа выдвигается общая гипотеза Гольдбаха. Скажем, числа 11 и 35 не допускают разложения на два простых слагаемых (даже если допускать в качестве таковых 1), поэтому для них, как и для многих других, общая гипотеза не предлагается. Частная же гипотеза предлагается для
Однако если не предполагать существования какого-то неизвестного нам сообщения Гольдбаха Эйлеру, то именно эти слова о разложении чисел на два простых слагаемых и явились причиной того замечания Эйлера в его ответном письме, в котором он приписывает Гольдбаху гипотезу о возможности такого разложения для чётных чисел.
Как подчёркивалось в предыдущем абзаце, в письме Гольдбаха такой гипотезы нет. Тем не менее Эйлер называет эту свою гипотезу «наблюдением» (eine Observation) Гольдбаха. Заметим также, что в письме Гольдбаха о чётности чисел ничего не говорится.
Ответное письмо Эйлера датировано 30 июня 1742 г. Вот что пишет в нём Эйлер на интересующую нас тему: