Читаем Апология математики (сборник статей) полностью

Однако (хотя это чаще всего забывают) Гольдбах причислял к простым числам и 1, о чём он объявил с полной ясностью. А тогда числа 3, 4, 5 также разлагаются в сумму трёх простых чисел. Но число 2 не разлагается в сумму трёх простых слагаемых, даже если в качестве таковых может выступать 1. В книге [2, с. 170] дан следующий перевод цитаты из письма Гольдбаха: «Таким образом, я хочу решиться высказать предположение… каждое число, большее чем 2, есть сумма трёх простых чисел». Там указывается, что переписка Эйлера с Гольдбахом цитируется по новому изданию [3]. Надо полагать, следовательно, что в издании 1965 г. цифра 1 была заменена на цифру 2. Изучение факсимильного воспроизведения письма Гольдбаха в книге [2, с. 171] оправдывает эту замену. Видно, что оговорку «die grösser ist als 1» («которое больше чем 1») Гольдбах вставил в уже написанную строку примечания. Сначала он пытается записать её между строк, но не находит места и помещает её под последней строкой примечания, где места тоже не слишком много (вспомним, что само примечание написано на левом поле и поперёк). Конец этой новой записи оказывается смазанным, а последняя цифра, принятая в издании 1843 г. за цифру 1, сливается с той линией, которой вставляемая запись обведена, как это всегда делается при вставках. Более тщательное прочтение убеждает, что указанную цифру следует читать не как 1, а как 2. Изложенное в этом абзаце составляет проблему не столько историческую, сколько литературную, хотя, впрочем, книга Фусса занимает заметное место в истории математики.

Как уже говорилось, предположение, что всякое число, начиная с 3 (в первоначальном варианте) или 6 (в современном варианте), может быть представлено в виде суммы трёх простых чисел, принято называть гипотезой Гольдбаха (the Goldbach conjecture). Таким образом, проблема Гольдбаха состоит в проверке гипотезы Гольдбаха. Часто проблему Гольдбаха понимают и так: доказать гипотезу Гольдбаха. Эти два понимания по существу не отличаются друг от друга, потому что в математике требование доказать почти всегда означает требование доказать или опровергнуть. Как мы видели, и гипотеза, и проблема Гольдбаха существуют в двух вариантах, различающихся смыслом слов. В исходном, Гольдбаховом, варианте 1 считается простым числом, и потому нижний рубеж равен 3. В современном варианте 1 простым числом не считается, и потому нижний рубеж равен 6. Ясно, что из современного варианта гипотезы вытекает исходный её вариант, и потому может оказаться, что исходная проблема несколько легче современной.

Из текста письма следует, что гипотеза о возможности представления чисел в виде суммы трёх простых – в каком бы из двух вариантов её ни понимать – трактуется Гольдбахом как частный случай более общей гипотезы о возможности представления чисел в виде суммы произвольного количества простых. Наверное, было бы терминологически правильным называть первую гипотезу Гольдбаха частной, а вторую – общей и различать общую и частную проблемы, состоящие в проверке соответствующих гипотез. Формулируя свою общую гипотезу, Гольдбах подразумевал, что число слагаемых, на которое разбивается число, больше 1[102] и не превосходит того числа, которое представляется в виде суммы. Напомним, что Гольдбах относил к простым числам и 1. При современном понимании термина «простое число» ограничения на число слагаемых усложняются, а потому усложняется и смысл общей гипотезы.

И в основном тексте письма, и в подстрочном примечании к нему упоминается разложение числа на сумму двух простых слагаемых (каждое из которых может быть и 1). Возможность такого разложения любого числа не утверждается и даже не предполагается в качестве гипотезы. Эта возможность фигурирует всего лишь в качестве условия того, что для данного числа выдвигается общая гипотеза Гольдбаха. Скажем, числа 11 и 35 не допускают разложения на два простых слагаемых (даже если допускать в качестве таковых 1), поэтому для них, как и для многих других, общая гипотеза не предлагается. Частная же гипотеза предлагается для всех чисел, начиная с 3.

Однако если не предполагать существования какого-то неизвестного нам сообщения Гольдбаха Эйлеру, то именно эти слова о разложении чисел на два простых слагаемых и явились причиной того замечания Эйлера в его ответном письме, в котором он приписывает Гольдбаху гипотезу о возможности такого разложения для чётных чисел.

Как подчёркивалось в предыдущем абзаце, в письме Гольдбаха такой гипотезы нет. Тем не менее Эйлер называет эту свою гипотезу «наблюдением» (eine Observation) Гольдбаха. Заметим также, что в письме Гольдбаха о чётности чисел ничего не говорится.

Ответное письмо Эйлера датировано 30 июня 1742 г. Вот что пишет в нём Эйлер на интересующую нас тему:

Перейти на страницу:

Похожие книги

1993. Расстрел «Белого дома»
1993. Расстрел «Белого дома»

Исполнилось 15 лет одной из самых страшных трагедий в новейшей истории России. 15 лет назад был расстрелян «Белый дом»…За минувшие годы о кровавом октябре 1993-го написаны целые библиотеки. Жаркие споры об истоках и причинах трагедии не стихают до сих пор. До сих пор сводят счеты люди, стоявшие по разные стороны баррикад, — те, кто защищал «Белый дом», и те, кто его расстреливал. Вспоминают, проклинают, оправдываются, лукавят, говорят об одном, намеренно умалчивают о другом… В этой разноголосице взаимоисключающих оценок и мнений тонут главные вопросы: на чьей стороне была тогда правда? кто поставил Россию на грань новой гражданской войны? считать ли октябрьские события «коммуно-фашистским мятежом», стихийным народным восстанием или заранее спланированной провокацией? можно ли было избежать кровопролития?Эта книга — ПЕРВОЕ ИСТОРИЧЕСКОЕ ИССЛЕДОВАНИЕ трагедии 1993 года. Изучив все доступные материалы, перепроверив показания участников и очевидцев, автор не только подробно, по часам и минутам, восстанавливает ход событий, но и дает глубокий анализ причин трагедии, вскрывает тайные пружины роковых решений и приходит к сенсационным выводам…

Александр Владимирович Островский

Публицистика / История / Образование и наука
Сталин. Битва за хлеб
Сталин. Битва за хлеб

Елена Прудникова представляет вторую часть книги «Технология невозможного» — «Сталин. Битва за хлеб». По оценке автора, это самая сложная из когда-либо написанных ею книг.Россия входила в XX век отсталой аграрной страной, сельское хозяйство которой застыло на уровне феодализма. Три четверти населения Российской империи проживало в деревнях, из них большая часть даже впроголодь не могла прокормить себя. Предпринятая в начале века попытка аграрной реформы уперлась в необходимость заплатить страшную цену за прогресс — речь шла о десятках миллионов жизней. Но крестьяне не желали умирать.Пришедшие к власти большевики пытались поддержать аграрный сектор, но это было технически невозможно. Советская Россия катилась к полному экономическому коллапсу. И тогда правительство в очередной раз совершило невозможное, объявив всеобщую коллективизацию…Как она проходила? Чем пришлось пожертвовать Сталину для достижения поставленных задач? Кто и как противился коллективизации? Чем отличался «белый» террор от «красного»? Впервые — не поверхностно-эмоциональная отповедь сталинскому режиму, а детальное исследование проблемы и анализ архивных источников.* * *Книга содержит много таблиц, для просмотра рекомендуется использовать читалки, поддерживающие отображение таблиц: CoolReader 2 и 3, ALReader.

Елена Анатольевна Прудникова

Публицистика / История / Образование и наука / Документальное
Революция 1917-го в России — как серия заговоров
Революция 1917-го в России — как серия заговоров

1917 год стал роковым для Российской империи. Левые радикалы (большевики) на практике реализовали идеи Маркса. «Белогвардейское подполье» попыталось отобрать власть у Временного правительства. Лондон, Париж и Нью-Йорк, используя различные средства из арсенала «тайной дипломатии», смогли принудить Петроград вести войну с Тройственным союзом на выгодных для них условиях. А ведь еще были мусульманский, польский, крестьянский и другие заговоры…Обо всем этом российские власти прекрасно знали, но почему-то бездействовали. А ведь это тоже могло быть заговором…Из-за того, что все заговоры наложились друг на друга, возник синергетический эффект, и Российская империя была обречена.Авторы книги распутали клубок заговоров и рассказали о том, чего не написано в учебниках истории.

Василий Жанович Цветков , Константин Анатольевич Черемных , Лаврентий Константинович Гурджиев , Сергей Геннадьевич Коростелев , Сергей Георгиевич Кара-Мурза

Публицистика / История / Образование и наука