То, что любое число, разложимое на два простых числа, в то же время могло бы быть разбито и на любое число простых, может быть проиллюстрировано и подтверждено исходя из наблюдения, сообщённого мне Вами ранее, а именно: что каждое чётное число есть сумма двух простых чисел. В самом деле, если данное число
Текст оригинала (со с. 135 книги Фусса):
Dass eine jegliche Zahl, welche in zwei numeros primos resolubi lis ist, zugleich in quot, quis volueruit, numeros primos zertheilt wer den könne, kann aus einer Observation, so Ew. vormals mit mir communicirt haben, dass nehmlich ein jeder numerus par eine sum ma duorum numerorum primorum sey, illustrirt und confirmirt werden. Denn, ist der numerus propositus
Итак, в ответном письме Эйлера содержится гипотеза о возможности разложения каждого чётного числа на сумму двух простых чисел. При этом, как видим, вслед за Гольдбахом к простым числам Эйлер относит и 1, что забывают при обсуждении проблемы Гольдбаха едва ли не всегда. В своих публикациях (по крайней мере в тех, которые мне известны) Эйлер, однако, не считал 1 простым числом – достаточно взглянуть, например, на § 267 из первого тома его трактата «Введение в анализ бесконечно малых»[103]
, где явно перечисляются «все простые числа 2, 3, 5, 7, 11, 13 и т. д.». Таким образом, гипотеза Эйлера также существует в двух вариантах – первоначальном, сформулированном Эйлером, и современном. Разложение, скажем, числа 18 вида 18 = 17 + 1 годится для первоначального варианта и не годится для современного; здесь надо искать такие разложения, как 18 = 13 + 5 и 18 = 11 + 7. В современном варианте следует говорить о разложении каждого чётного числа, начиная с 4. Ясно, что 4 – единственное чётное число, разлагаемое на такие два простых слагаемых, из которых хотя бы одно чётно, так что все последующие чётные числа могут разлагаться только на два простых нечётных слагаемых. Ясно также, почему речь идёт о разложении только чётных чисел: ведь нечётное